Systems of equations
To find the inverse of \(3\times3\) matrices, you must understand augmented matrices and elementary row operations. Use this resource to review these concepts.
Being able to find the inverse of a \(3\times3\) matrix will help to simplify complex problems and enhances your ability to perform matrix operations efficiently. This is crucial in fields like engineering, physics and computer science.
Before you read further, make sure that you are familiar with augmented matrices and elementary row operations.
Unlike \(2\times2\) matrices, finding the inverse of \(3\times3\) matrices is a bit more complicated.
Let's consider matrix \(A\):
\[\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{array} \right] \]
There are a few methods to find the inverse of a \(3\times3\) matrix, but here, we will use the following method:
A square matrix ONLY has an inverse if its determinant is not equal to \(0\).
Rememeber the elementary row operations:
When using elementary row operations to find the inverse, there is a preferred order to achieve the identity matrix:
\[\begin{align*} \underbrace{ \left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{array} \right]}_{\textrm{Original matrix}} \rightarrow \underbrace{ \left[ \begin{array}{ccc} 1 & a_{12} & a_{13}\\
0 & a_{22} & a_{23}\\
0 & a_{32} & a_{33}
\end{array}\right]}_{a_{11}=1,\,a_{21}=a_{23}=0} \rightarrow \underbrace{ \left[ \begin{array}{ccc} 1 & a_{12} & a_{13}\\
0 & 1 & a_{23}\\
0 & a_{32} & a_{33}
\end{array} \right]}_{a_{22}=1}\\
\rightarrow \underbrace{ \left[ \begin{array}{ccc} 1 & 0 & a_{13}\\
0 & 1 & a_{23}\\
0 & 0 & a_{33}
\end{array} \right]}_{a_{12}=a_{32}=0} \rightarrow \underbrace{ \left[ \begin{array}{ccc} 1 & 0 & a_{13}\\
0 & 1 & a_{23}\\
0 & 0 & 1
\end{array} \right]}_{a_{31}=1} \rightarrow \underbrace{ \left[ \begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right]}_{a_{13}=a_{23}=0}
\end{align*}\] If this looks confusing and a bit scary, don’t worry. It's easier to understand how this works with examples containing actual numbers.
Find the inverse of the matrix \(A = \left[ \begin{array}{ccc} 1 & 0 & 1\\
-1 & 2 & 2\\
1 & 1 & 2
\end{array} \right]\).
First, set up the augmented matrix \(\left[A|I\right]\):
\[\left[ A|I \right] = \left[ \begin{array}{ccc} 1 & 0 & 1\\
-1 & 2 & 2\\
1 & 1 & 2
\end{array}
\left|
\begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right. \right] \]
We now use elementary row operations to reduce the matrix on the left-hand side (LHS) to the identity matrix.
We already have a \(1\) in the \(a_{11}\) position of the LHS matrix, so we first make \(a_{21}=a_{31}=0\). We can show this by writing the original augmented matrix, followed by the equations in the middle for the row operations, then the new augmented matrix.
The next step is to make \(a_{22}=1\) in the LHS matrix. There are two ways to do this. We could divide \(R_{2}\) by \(2\); however, this introduces a fraction that may be awkward. Fractions are often required, but we will avoid using them until absolutely necessary.
The other way is to interchange \(R_{2}\) and \(R_{3}\).
\[\begin{align*} \left[ \begin{array}{ccc} 1 & 0 & 1\\
0 & 2 & 3\\
0 & 1 & 1
\end{array}
\left|
\begin{array}{ccc} 1 & 0 & 0\\
1 & 1 & 0\\
-1 & 0 & 1
\end{array} \right. \right] & \begin{array}{c} \\
R_{2}\rightarrow R_{3}\\
R_{3}\rightarrow R_{2}
\end{array}
\left[ \begin{array}{ccc} 1 & 0 & 1\\
0 & 1 & 1\\
0 & 2 & 3
\end{array}
\left|
\begin{array}{ccc} 1 & 0 & 0\\
-1 & 0 & 1\\
1 & 1 & 0
\end{array} \right. \right]
\end{align*}\]
Next, we make \(a_{32}=0\) in the LHS matrix by subtracting \(2R_{2}\) from \(R_{3}\). By completing this operation, we have also achieved \(a_{33}=1\) in the LHS matrix.
Finally, we make \(a_{13}=a_{23}=0\) using \(R_{3}\) as follows:
The LHS matrix is the identity matrix and so the RHS is the inverse.
\[A^{-1} = \left[\begin{array}{ccc} -2 & -1 & 2\\
-4 & -1 & 3\\
3 & 1 & -2
\end{array} \right] \]
In general, for matrices \(A\) and \(B\), \(AB\ne BA\), you should always check that \(AA^{-1}=A^{-1}A=I\).
\[\begin{align*} AA^{-1} & = \left[ \begin{array}{ccc} 1 & 0 & 1\\
-1 & 2 & 2\\
1 & 1 & 2
\end{array} \right]
\left[ \begin{array}{ccc} -2 & -1 & 2\\
-4 & -1 & 3\\
3 & 1 & -2
\end{array} \right]\\
& = \left[ \begin{array}{ccc} -2+3 & -1+1 & 2-2\\
2-8+6 & 1-2+2 & -2+6-4\\
-2-4+6 & -1-1+2 & 2+3-4
\end{array} \right]\\
& = \left[ \begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right]\\
& = I
\end{align*}\] \[\begin{align*} A^{-1}A & = \left[\begin{array}{ccc} -2 & -1 & 2\\
-4 & -1 & 3\\
3 & 1 & -2
\end{array} \right]
\left[ \begin{array}{ccc} 1 & 0 & 1\\
-1 & 2 & 2\\
1 & 1 & 2
\end{array} \right]\\
& = \left[ \begin{array}{ccc} -2+1+2 & -2+2 & -2-2+4\\
-4+1+3 & -2+3 & -4-2+6\\
3-1-2 & 2-2 & 3+2-4
\end{array} \right]\\
& = \left[ \begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right]\\
& = I
\end{align*}\]
Hence, \(A^{-1} = \left[ \begin{array}{ccc} -2 & -1 & 2\\
-4 & -1 & 3\\
3 & 1 & -2
\end{array} \right] \)
The augmented matrix is:
\[\begin{align*} \left[ B|I\right] & = \left[ \begin{array}{ccc} 1 & -1 & -1\\
3 & -2 & 1\\
-1 & 1 & 3
\end{array}
\left|
\begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right. \right]
\end{align*}\]
Next, we must use row operations to reduce \(B\) to \(I\).
The RHS is the inverse matrix.
\[\begin{align*} B^{-1} & = \left[ \begin{array}{ccc} -\frac{7}{2} & 1 & -\frac{3}{2}\\
-5 & 1 & -2\\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array} \right]\\
& = \frac{1}{2}\left[ \begin{array}{ccc} -7 & 2 & -3\
-10 & 2 & -4\\
1 & 0 & 1
\end{array} \right]
\end{align*}\]
To confirm that we have the inverse, we need to check whether \(BB^{1}=B^{1}B=I\).
\[\begin{align*} BB^{-1} & = \left[ \begin{array}{ccc} 1 & -1 & -1\\
3 & -2 & 1\\
-1 & 1 & 3
\end{array} \right]
\frac{1}{2} \left[ \begin{array}{ccc} -7 & 2 & -3\\
-10 & 2 & -4\\
1 & 0 & 1
\end{array} \right]\\
& = \frac{1}{2} \left[ \begin{array}{ccc} 1 & -1 & -1\\
3 & -2 & 1\\
-1 & 1 & 3
\end{array} \right]
\left[ \begin{array}{ccc} -7 & 2 & -3\\
-10 & 2 & -4\\
1 & 0 & 1
\end{array} \right]\\
& = \frac{1}{2} \left[ \begin{array}{ccc} -7+10-1 & 2-2 & -3+4-1\\
-21+20+1 & 6-4 & -9+8+1\\
7-10+3 & -2+2 & 3-4+3
\end{array} \right]\\
& = \frac{1}{2} \left[ \begin{array}{ccc} 2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 2
\end{array} \right]\\
& = I
\end{align*}\] \[\begin{align*} B^{-1}B & = \frac{1}{2} \left[ \begin{array}{ccc} -7 & 2 & -3\\
-10 & 2 & -4\\
1 & 0 & 1
\end{array} \right]
\left[ \begin{array}{ccc} 1 & -1 & -1\\
3 & -2 & 1\\
-1 & 1 & 3
\end{array} \right]\\
& = \frac{1}{2} \left[ \begin{array}{ccc} -7+6+3 & 7-4-3 & 7+2-9\\
-10+6+4 & 10-4-4 & 10+2-12\\
1-1 & -1+1 & -1+3
\end{array} \right]\\
& = \frac{1}{2} \left[ \begin{array}{ccc} 2 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 2
\end{array}\right]\\
& = I
\end{align*}\]
Hence, \(B^{-1} = \frac{1}{2} \left[ \begin{array}{ccc} -7 & 2 & -3\\
-10 & 2 & -4\\
1 & 0 & 1
\end{array} \right] \).
The augmented matrix is:
\[\left[ C|I\right] = \left[ \begin{array}{ccc} 1 & 2 & 2\\
1 & 1 & 2\\
1 & 3 & 2
\end{array}
\left|
\begin{array}{ccc} 1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right. \right] \]
Now, we complete row operations to reduce \(C\) to \(I\).
Row \(3\) in the LHS matrix consists entirely of \(0\)'s. It is impossible to transform this matrix into the identity matrix using row operations. Hence, this matrix is singular and no inverse exists.
Remember that you can check whether a matrix has an inverse by finding its determinant. If the \(\det C=0\), then the matrix does not have an inverse, as is the case here.