Integration of reciprocal functions
How do you integrate a reciprocal function? This skill is important for calculating electrical currents in circuits and modelling harmonic motion in mechanical systems. Use this resource to learn how.
Reciprocal functions have the form:
\[y=\frac{k}{x}\]
where \(k\) is a constant. We often deal with reciprocal functions when looking at Inverse functions . Examples include \(y=\dfrac{1}{x}\) and \(f(x)=\dfrac{1}{3x-1}\).
The power rule
One of the most important rules for integration is the power rule . It states that:
\[ \int x^{n}dx=\frac{1}{n+1}x^{n+1}+c,\,n\neq-1 \]
where \(c\) is a constant.
The reason that \(n\neq-1\) is that if \(n=-1\), \(\dfrac{1}{n+1}\) would be \(\dfrac{1}{0}\), which is undefined. \(n\) can be any number (other than \(-1\)) — positive, negative or a fraction. Often, instead of saying \(c\) is a constant, we write \(c\in\mathbb{R}\) which means \(c\) is a real number.
When we encounter a case when \(n=-1\), such as integrating \(\int\left(\dfrac{1}{x}\right)dx\), we define a new function:
\[ \int\frac{1}{x}dx=\log_{e}\left|x\right|+c\]
where \(c\) is a constant.
The function \(\log_{e}\left|x\right|\) is called the natural logarithm . It is sometimes written as \(\ln\left|x\right|\). The absolute value sign is used as the natural logarithm is not defined for negative arguments.
We can now integrate \(f(x)=\dfrac{m}{x}\) where \(m\) is any constant:
\[\begin{align*} \int\frac{m}{x}dx & = m\int\frac{1}{x}dx\\
& = m\log_{e}\left|x\right|+c \end{align*}\]
There is a more general rule:
\[ \int\frac{m}{ax+b}dx=\frac{m}{a}\log_{e}\left|ax+b\right|+c \]
where \(a\), \(b\) and \(m\) be constants with \(a\neq0\).
Example 1 – integrating reciprocal functions
Integrate \(f(x)=\dfrac{1}{2x}\) with respect to \(x\).
Here, \(m=1\), \(a=2\) and \(b=0\).
\[\int\frac{1}{2x}dx=\frac{1}{2}\log_{e}\left|2x\right|+c,\, c\in\mathbb{R}\]
Calculate the integral \(\int\dfrac{2}{3x}dx\).
Here, \(m=2\), \(a=3\) and \(b=0\).
\[\int\frac{2}{3x}dx=\frac{2}{3}\log_{e}\left|3x\right|+c,\,c\in\mathbb{R}\]
Integrate \(f(x)=\dfrac{13}{5x-7}\) with respect to \(x\).
Here, \(m=13\), \(a=5\) and \(b=-7\).
\[\int\frac{13}{5x-7}dx=\frac{13}{5}\ln\left|5x-7\right|+c,\,c\in\mathbb{R}\]
Integrate \(f(x)=\dfrac{6}{2-3x}\) with respect to \(x\).
Here, \(m=6\), \(a=-3\) and \(b=2\).
\[\begin{align*} \int\frac{6}{2-3x}dx & = \frac{6}{-3}\log_{e}\left|2-3x\right|+c,\,c\in\mathbb{R}\\
& = -2\log_{e}\left|2-3x\right|+c
\end{align*}\]
Integrate \(f(x)=\dfrac{6}{2-3x}-\dfrac{2}{x+1}\) with respect to \(x\).
Here, \(m=6\), \(a=-3\) and \(b=2\) in the first term on the right-hand side and \(m=-2\), \(a=1\) and \(b=1\) in the second.
\[\begin{align*} \int\left(\frac{6}{2-3x}-\frac{2}{x+1}\right)dx & = \frac{6}{-3}\log_{e}\left|2-3x\right|-2\log_{e}\left|x+1\right|+c,\,c\in\mathbb{R}\\
& = -2\log_{e}\left|2-3x\right|-2\log_{e}\left|x+1\right|+c \end{align*}\]
Find the integral \(\int_{1}^{2}\dfrac{1}{2x}dx\).
In this case, the antiderivative is \(F(x)=\dfrac{1}{2}\log_{e}\left|2x\right|+c,\,c\in\mathbb{R}\).
It is also handy to remember the log laws .
\[\begin{align*} \int_{1}^{2}\frac{1}{2x}dx & = \left[\frac{1}{2}\log_{e}\left|2x\right|+c\right]_{x=1}^{x=2}\\
& = \frac{1}{2}\log_{e}\left|2(2)\right|+c-\left(\frac{1}{2}\log_{e}\left|2\left(1\right)\right|+c\right)\\
& = \frac{1}{2}\log_{e}\left|4\right|-\frac{1}{2}\log_{e}\left|2\right|\\
& = \frac{1}{2}\log_{e}\left|\frac{4}{2}\right|\\
& = \frac{1}{2}\log_{e}(2)
\end{align*}\]
Find the integral \(\int_{2}^{3}\dfrac{13}{5x-7}dx\).
In this case, the antiderivative is \(F(x)=\dfrac{13}{5}\log_{e}\left|5x-7\right|+c,\,c\in\mathbb{R}\).
\[\begin{align*} \int_{2}^{3}\frac{13}{5x-7}dx & = \left[\frac{13}{5}\log_{e}\left|5x-7\right|\right]_{2}^{3}\\
& = \frac{13}{5}\log_{e}\left|15-7\right|-\left(\frac{13}{5}\log_{e}\left|10-7\right|\right)\\
& = \frac{13}{5}\log_{e}\left|8\right|-\left(\frac{13}{5}\log_{e}\left|3\right|\right)\\
& = \frac{13}{5}\log_{e}\frac{8}{3}
\end{align*}\]
Exercise – integrating reciprocal functions
Calculate the following integrals.
\(\int\dfrac{1}{5x}dx\)
\(\int\dfrac{3}{2x}dx\)
\(\int\dfrac{3}{3x-5}dx\)
\(\int\dfrac{6}{2-7x}dx\)
Integrate the following functions with respect to \(x\).
\(f(x)=x^{2}-\dfrac{2}{x}\)
\(f(x)=\dfrac{1}{3x-2}+\dfrac{3}{1-x}\)
\(f(x)=\dfrac{3}{3x-7}-x^{2}\)
\(f(x)=\dfrac{2}{5x-4}-\dfrac{3}{2-5x}\)
Find the following intervals.
\(\int_{1}^{5}\dfrac{2}{3x}dx\)
\(\int_{1}^{2}\dfrac{2}{3x-1}dx\)
\(\int_{1}^{3}\left(x^{2}-\dfrac{2}{x}\right)dx\)
\(\int_{2}^{4}\left(\dfrac{2}{5x-4}-\dfrac{3}{2-5x}\right)dx\)
Hint: \(\log_{e}(1)=0\).
\(\dfrac{1}{5}\log_{e}\left|x\right|+c\)
\(\dfrac{3}{2}\log_{e}\left|2x\right|+c\)
\(\log_{e}\left|3x-5\right|+c\)
\(-\dfrac{6}{7}\log_{e}\left|2-7x\right|+c\)
\(\dfrac{1}{3}x^{3}-2\log_{e}\left|x\right|+c\)
\(\dfrac{1}{3}\log_{e}\left|3x-2\right|-3\log_{e}\left|1-x\right|+c\)
\(\log_{e}\left|3x-5\right|-\dfrac{1}{3}x^{3}+c\)
\(\dfrac{2}{5}\log_{e}\left|5x-4\right|+\dfrac{3}{5}\log_{e}\left|2-5x\right|+c\)
\(\dfrac{2}{3}\log_{e}(5)\)
\(\dfrac{2}{3}\log_{e}\left(\dfrac{5}{2}\right)\)
\(\dfrac{26}{3}-2\log_{e}(3)\)
\(\dfrac{2}{5}\log_{e}\left(\dfrac{8}{3}\right)+\dfrac{3}{5}\log_{e}\left(\dfrac{9}{4}\right)\)
Copy the iframe code above.
Go to the course in Canvas where you want to add the content.
Navigate to the page or module where you want to embed the content.
In the Rich Content Editor, click on the "HTML Editor" link.
Paste the iframe code into the HTML area.
Switch back to the Rich Content Editor to see the embedded content.
Save the changes to your page or module.
Note: Ensure that your permissions allow embedding external content in your Canvas LMS instance.