V8 Equation of a Plane

A plane is a subset of three dimensional space. In non mathematical terms you can think of it as a flat surface that extends infinitely in two directions. It may be defined as

1. the surface that goes through three points or
2. the surface containing a point and having a fixed normal vector.

Cartesian Equation of a Plane

The above diagram represents a part of a plane. On the plane are two points, $P(x, y, z)$ and $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.

The vector $\overrightarrow{P_{0} P}=\left(x-x_{0}\right) \hat{i}+\left(y-y_{0}\right) \hat{j}+\left(z-z_{0}\right) \hat{k}$.
Also illustrated is a normal vector to the plane (that is a vector at right angles to the plane) represented by $\vec{N}=a \hat{i}+b \hat{j}+c \hat{k}$, where a, b and c are constants.

Since \vec{N} is perpendicular to $\overrightarrow{P_{0} P}$ their dot product must equal zero ${ }^{1}$, that is to say $\vec{N} \cdot \overrightarrow{P_{0} P}=0$ therefore:
${ }^{1}$ The definition of the dot product of two vectors \vec{a} and \vec{b} is

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and \vec{b}.
If \vec{a} and \vec{b} are perpendicular, $\theta=90^{\circ}$. Hence $\cos (\theta)=\cos \left(90^{\circ}\right)=0$ and so

$$
(a \hat{i}+b \hat{j}+c \hat{k}) \cdot\left(\left(x-x_{0}\right) \hat{i}+\left(y-y_{0}\right) \hat{j}+\left(z-z_{0}\right) \hat{k}\right)=0
$$

So

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

This equation defines the plane in Cartesian coordinates.
This equation may be rearranged:

$$
\begin{aligned}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) & =0 \\
a x+b y+c z & =a x_{0}+b y_{0}+c z_{0} \\
& =d
\end{aligned}
$$

where d is a constant. In fact, the general equation of a plane with the normal vector $\vec{N}=a \hat{i}+b \hat{j}+c \hat{k}$ is

$$
a x+b y+c z=d
$$

For example,

1. $2 x-3 y+z=6$ is a plane.
2. $x+y=4$ is a plane.
3. $z=x-2 y+3$ is a plane. To see this rearrange it to get the Cartesian form of the plane, $x-2 y-z=-3$.

Example 1

If a plane has the normal vector $\vec{N}=\hat{i}+2 \hat{j}-5 \hat{k}$ and contains the point $(3,4,1)$ then we can say that the equation of the plane is:

$$
\begin{aligned}
1(x-3)+2(y-4)-5(z-1) & =0 \\
x-3+2 y-8-5 z+5 & =0 \\
x+2 y-5 z & =3+8-5 \\
x+2 y-5 z & =6
\end{aligned}
$$

Compare this equation with the normal vector, \vec{N}. You will notice that the coefficients of \hat{i}, \hat{j} and \hat{k} for the normal vector are the same as the coefficients of x, y and z in the equation of the plane.

Example 2

Find the equation of the plane normal to the vector $6 \hat{i}-5 \hat{j}+\hat{k}$ that passes through the point $(1,2,3)$.

The equation of the plane will be ${ }^{2}$

[^0]\[

$$
\begin{aligned}
6(x-1)-5(y-2)+1(z-3) & =0 \\
6 x-6-5 y+10+z-3 & =0 \\
6 x-5 y+z & =6-10+3 \\
6 x-5 y+z & =-1
\end{aligned}
$$
\]

Not only can we find the equation of a plane, given a point and a normal vector, but we can also find the equation of the normal vector given the equation of a plane.

For example the plane $3 x+4 y-z=9$ has a normal vector $\vec{N}=$ $3 \hat{i}+4 \hat{j}-\hat{k}$.

Example 3

Find the equation of the plane that passes through the point $(2,1,-5)$ and is parallel to the plane $z=2 x+3 y-4$.

Since the plane is parallel to $z=2 x+3 y-4$, it will have the same normal vector.

The equation $z=2 x+3 y-4$ can be written as $2 x+3 y-z=4$, therefore its normal vector will be $2 \hat{i}+3 \hat{j}-\hat{k}$.

So the equation of the plane we wish to find will pass through the point $(2,1,-5)$ and have a normal vector $2 \hat{i}+3 \hat{j}-\hat{k}$.

$$
\begin{aligned}
2(x-2)+3(y-1)-1(z+5) & =0 \\
2 x-4+3 y-3-z-5 & =0 \\
2 x+3 y-z & =4+3+5 \\
2 x+3 y-z & =12
\end{aligned}
$$

Example 4

Find the equation of the plane that contains the three points $A(1,1,1)$, $B(2,4,3)$ and $C(3,2,1)$.

First find the cross product of the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ as this will give a vector normal to the plane.

Then use this normal vector and any one of the three given points to find the equation of the plane.

$$
\overrightarrow{A B} \times \overrightarrow{A C}=(1 \hat{i}+3 \hat{j}+2 \hat{k}) \times(2 \hat{i}+\hat{j})
$$

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & 2 \\
2 & 1 & 0
\end{array}\right|=-2 \hat{i}+4 \hat{j}-5 \hat{k}
$$

So the plane has the normal vector $\vec{N}=-2 \hat{i}+4 \hat{j}-5 \hat{k}$ and contains the point $(1,1,1)^{3}$

Therefore the equation of the plane is

$$
\begin{aligned}
-2(x-1)+4(y-1)-5(z-1) & =0 \\
-2 x+2+4 y-4-5 z+5 & =0 \\
-2 x+4 y-5 z & =-2+4-5 \\
-2 x+4 y-5 z & =-3 \\
\text { or } 2 x-4 y+5 z & =3 .
\end{aligned}
$$

Exercises

1. What are the vectors normal to the following planes,
(a) $2 x+3 y+7 z=13$
(b) $z=x+3 y-9$.
Answer: a) $2 \hat{i}+3 \hat{j}+7 \hat{k}$
b) $\hat{i}+3 \hat{j}-\hat{k}$.
2. Find the equation of the plane that contains the point $(2,3,1)$ and has the normal vector $4 \hat{i}+3 \hat{j}-2 \hat{k}$.

Answer: $4 x+3 y-2 z=15$.
3. Find the equation of the plane that contains the point $(5,-3,2)$ and has the normal vector $\hat{i}-9 \hat{j}-4 \hat{k}$.

Answer: $x-9 y-4 z=24$.
4. Find the equation of the plane that contains the point $(1,-1,0)$ and is parallel to the plane $x-3 y+2 z=0$.

Answer: $x-3 y+2 z=4$.
5. Find the equation of the plane that contains the points $(1,2,3)$,
$(2,1,1)$ and $(-3,0,4)$.
Answer: $5 x-7 y+6 z=9$.

[^0]: ${ }^{2}$ Obviously there are an infinite number of parallel planes that are perpendicular to the given vector. For instance $6 x-$ $5 y+z=-1,6 x-5 y+z=0$, $6 x-5 y+z=6,6 x-5 y+z=11$ etc. are all perpendicular to the vector $6 \hat{i}-5 \hat{j}+\hat{k}$ but only one of these, $6 x-5 y+z=-1$, will pass through the given point.

