RMIT
UNIVERSITY

V6 Vector Equation of a Line

Introduction

You have probably been taught that a line in the $x-y$ plane can be represented in the form

$$
y=m x+c
$$

where m is the gradient (or slope) of the line and c is the y-intercept. But how do we define a line in three dimensions (3D)? ${ }^{1}$

This module deals with the equation of a line in ${ }_{3} \mathrm{D}$.

Vector Equation of a Line in 3D

A line in 3 D space can be described by a point and a vector along the line. There is only one line that can be drawn through a given point in the direction of a given vector.

Consider the figure below:

Here

- $\overrightarrow{r_{1}}$ and \vec{r}_{2} are two points on the line;
- $P_{0}(x, y, z)$ is a point on the line and \vec{P}_{0} is it's position vector;
- \vec{V} is a vector along the line;

${ }^{1}$ Three dimensional space (3D) is a geometric setting in which three coordinates are required to determine the position of a point. This is different to when we are dealing with points in the $x-y$ plane where only two co-ordinates are required.
- t is a constant. That is $t \in \mathbb{R}$.

To get to the point R_{1} you first need to get onto the line. You do this by traveling along \vec{P}_{0} to the point P_{0} on the line and then traveling a distance along the line in the direction of vector \vec{V}. So we could write

$$
\vec{r}_{1}=\vec{P}_{0}+t \vec{V}
$$

where t is a positive constant. The quantity $t \vec{V}$ represents the distance and the direction we need to go along the line to get to the point R_{1} from P_{0}.

To get to the point R_{2} you first need to get onto the line. You do this by traveling along \vec{P}_{0} to the point P_{0} on the line and then traveling a distance along the line in the opposite direction of vector \vec{V}. So we could write

$$
\vec{r}_{1}=\vec{P}_{0}+t \vec{V}
$$

where t is a negative constant (because we are going in the direction opposite to \vec{V}).

Considering the above, we hope you understand the equation of a line, in vector form, is

$$
\begin{equation*}
\vec{r}=\vec{P}_{0}+t \vec{V} \tag{1}
\end{equation*}
$$

where $t \in \mathbb{R}$ is a constant.
It is also possible to define the line in other forms as described below.

Parametric Equation of a Line in $3 D$

Suppose we wish to find the line that goes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of the vector $\vec{V}=a \hat{i}+b \hat{j}+c \hat{k}$. Consider a general point $P(x, y, z)$ that lies on the line that goes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ as shown at right. We can define a vector $\overrightarrow{P_{0} P}$ by:

$$
\begin{equation*}
\overrightarrow{P_{0} P}=\left(x-x_{0}\right) \hat{i}+\left(y-y_{0}\right) \hat{j}+\left(z-z_{0}\right) \hat{k} \tag{2}
\end{equation*}
$$

This vector will obviously be in the same direction as \vec{V} but will, in all likelihood have a different magnitude. In other words $\overrightarrow{P_{0} P}$ will be a multiple of the direction vector \vec{V}. So $\overrightarrow{P_{0} P}=t \vec{V}$ where $t \in \mathbb{R}$ is some number.

Hence:

$$
\begin{aligned}
\overrightarrow{P_{0} P} & =t \vec{V} \\
& =t(a \hat{i}+b \hat{j}+c \hat{k}) \\
& =a t \hat{i}+b t \hat{j}+c t \hat{k} .
\end{aligned}
$$

Equating components of (2) and (3) we have,

$$
\begin{align*}
\left(x-x_{0}\right) & =a t \\
x & =x_{0}+a t \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
\left(y-y_{0}\right) & =b t \\
y & =y_{0}+b t \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
\left(z-z_{0}\right) & =c t \\
z & =z_{0}+c t . \tag{6}
\end{align*}
$$

These equations $x=x_{0}+a t, y=y_{0}+b t$ and $z=z_{0}+c t$ are called the parametric equations of the line that contains the point $\left(x_{0}, y_{0}, z_{0}\right)$ and has the direction vector $\vec{V}=a \hat{i}+b \hat{j}+c \hat{k}$. The variable $t \in \mathbb{R}$ is called a parameter.

Symmetric Form of the Line

By rearranging (4) to (6) above we find:

$$
\begin{aligned}
& t=\frac{x-x_{0}}{a} \\
& t=\frac{y-y_{0}}{b} \\
& t=\frac{z-z_{0}}{c}
\end{aligned}
$$

Since they are all equal, we can say that:

$$
\begin{equation*}
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \tag{7}
\end{equation*}
$$

This is called the symmetric form of the equation of the line.

Summary

A line in 3 D may be represented:

1. In vector form (see (1) above)
2. In parametric form (see $(4-6)$ above)
3. In symmetric form (see (7)above).

Example 1

Find the parametric and symmetric equations of the line that goes through the point $(3,2,3)$ and is in the direction of the vector $2 \hat{i}+\hat{j}-$ $5 \hat{k}$.

Solution:
Using equations $(4-6)$ the parametric equations will be :

$$
\begin{aligned}
& x=3+2 t \\
& y=2+t \\
& z=3-5 t
\end{aligned}
$$

Using equation (7) the symmetric equations will be:

$$
\frac{x-3}{2}=\frac{y-2}{1}=\frac{z-3}{-5}
$$

or

$$
\frac{x-3}{2}=y-2=\frac{3-z}{5}
$$

Example 2

Find the parametric and symmetric equations of the line that goes through the point $(1,3,2)$ in the direction of the vector $\vec{V}=\hat{j}-2 \hat{k}$.

Solution:
The parametric equations will be:

$$
\begin{aligned}
x & =1+0 t \\
& =1 \\
y & =3+t \\
z & =2-2 t .
\end{aligned}
$$

The symmetric equation will be:

$$
x=1 ; y-3=\frac{z-2}{-2}
$$

or

$$
x=1 ; y-3=-\frac{1}{2} z+1
$$

Example 3

Find the direction vector of the line :

$$
\frac{x-6}{2}=\frac{y-2}{-1}=\frac{z}{3}
$$

Solution:
The line is in symmetric form and so

$$
\begin{aligned}
\frac{x-6}{2} & =t \\
\frac{y-2}{-1} & =t \\
\frac{z}{3} & =t
\end{aligned}
$$

for any $t \in \mathbb{R}$. Rearranging gives the parametric form:

$$
\begin{aligned}
& x=6+2 t \\
& y=2-t \\
& z=3 t
\end{aligned}
$$

This may be written in vector form as

$$
x \hat{i}+y \hat{j}+z \hat{k}=(6 \hat{i}+2 \hat{j}+0 \hat{k})+t(2 \hat{i}-\hat{j}+3 \hat{k})
$$

which is a line through the point $(6,2,0)$ in the direction $(2 \hat{i}-\hat{j}+3 \hat{k})$.
Hence the direction vector is $\vec{V}=2 \hat{i}-\hat{j}+3 \hat{k}$. Note that the direction vector of the line could be any multiple of this vector.

Example 4

A line passes through the points $A(1,2,4)$ and $B(3,-1,-2)$. Find the equation of the line in a) vector format b) in parametric format and c) in symmetric format.

Solution:
a) For vector format we need to find a vector along the line. This can be ${ }^{2}$

[^0]\[

$$
\begin{aligned}
\overrightarrow{A B} & =(3-1) \hat{i}+(-1-2) \hat{j}+(-2-4) \hat{k} \\
& =2 \hat{i}-3 \hat{j}-6 \hat{k}
\end{aligned}
$$
\]

The vector $\overrightarrow{A B}$ is the direction vector along the line. We can now use either point, A or B to find the equation of the line in vector format. So the possible vector forms are:

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}+4 \hat{k})+t(2 \hat{i}-3 \hat{j}-6 \hat{k}) \tag{8}
\end{equation*}
$$

where $t \in \mathbb{R}$ and we have used point A, or

$$
\begin{equation*}
\vec{r}=(3 \hat{i}-\hat{j}-2 \hat{k})+t(2 \hat{i}-3 \hat{j}-6 \hat{k}) \tag{9}
\end{equation*}
$$

where we have used point B. Either is acceptable.
b) For the parametric equations, you can use either (8) or (9). We will use (8). Equating components, ${ }^{3}$ we have

$$
\begin{aligned}
\vec{r} & =(1 \hat{i}+2 \hat{j}+4 \hat{k})+t(2 \hat{i}-3 \hat{j}-6 \hat{k}) \\
x \hat{i}+y \hat{j}+z \hat{k} & =(1 \hat{i}+2 \hat{j}+4 \hat{k})+t(2 \hat{i}-3 \hat{j}-6 \hat{k})
\end{aligned}
$$

${ }^{3}$ Remember

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

where x, y and z are the coordinates of any point on the line.
and so the parametric equations are

$$
\begin{align*}
& x=1+2 t \tag{10}\\
& y=2-3 t \tag{11}\\
& z=4-6 t \tag{12}
\end{align*}
$$

are the parametric equations.
c) The symmetric equations are obtained by solving $(10-12)$ for t to get

$$
\begin{aligned}
& t=\frac{x-1}{2} \\
& t=\frac{2-y}{3} \\
& t=\frac{4-z}{6}
\end{aligned}
$$

So the symmetric equations are:

$$
\frac{x-1}{2}=\frac{2-y}{3}=\frac{4-z}{6}
$$

Note that you will get different parametric and symmetric equations if you use (9) above. However they are acceptable solutions.

Exercise:

Find the symmetric and parametric equations of the lines that satisfy the given conditions:

1. Contains the point $(1,-1,2)$ with the direction vector $2 \hat{i}-2 \hat{j}+3 \hat{k}$?

Answer: $\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z-2}{3}$ and $x=1+2 t ; y=-1-2 t ; z=2+3 t$
2. Contains the point $(3,4,-1)$ with the direction vector $\hat{i}+\hat{j}+5 \hat{k}$?

Answer: $\frac{x-3}{1}=\frac{y-4}{1}=\frac{z+1}{5}$ and $x=3+t ; y=4+t ; z=5 t-1$
3. Contains the point $(2,3,-1)$ parallel to $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{x+1}{3}$?

Answer: $\frac{x-2}{2}=\frac{y-3}{-1}=\frac{z+1}{3}$ and $x=2+2 t ; y=3-t ; z=-1+3 t$
4. Contains the point $(2,2,1)$ and $(1,1,3)$?

Answer: $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-3}{-2}$ and $x=1+t ; y=1+t ; z=3-2 t$
or
$\frac{x-2}{1}=\frac{y-2}{1}=\frac{z-1}{-2}$ and $x=2+t ; y=2+t ; z=1-2 t$

[^0]: ${ }^{2}$ Note that it is also valid to take the vector $\overrightarrow{B A}$.

