V5 Projection of Vectors

There are two types of vector projection:

1. Scalar projection
2. Vector projection

For scalar projection, we calculate the length (a scalar quantity) of a vector in a particular direction.

For vector projection we calculate the vector component of a vector
 in a given direction.

Often, in Physics, Engineering and Mathematics courses you are asked to resolve a vector into two component vectors that are perpendicular to one another. As an example, in the diagram below a vector \vec{a} is the projection of \vec{F} in the horizontal direction while \vec{b} is the projection of \vec{F} in the vertical direction.

You can project a vector in any direction, not only horizontally and vertically.

This module discusses both scalar and vector projections.

Scalar Projection

Consider the following diagram:

Let $\overrightarrow{P Q}=\vec{a}$ and $\overrightarrow{P S}=\vec{b}$. The scalar projection of the vector \vec{a} in the direction of vector \vec{b} is the length of the straight line $P R$ or $|\overrightarrow{P R}|$ where ${ }^{1}$

$$
\begin{aligned}
\cos (\theta) & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
& =\frac{|\overrightarrow{P R}|}{|\vec{a}|}
\end{aligned}
$$

Rearranging gives,

$$
\begin{equation*}
|\overrightarrow{P R}|=|\vec{a}| \cos (\theta) . \tag{1}
\end{equation*}
$$

This may be written in terms of the dot product ${ }^{2}$.
We know

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)
$$

and so

$$
\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Substituting this expression for $\cos (\theta)$ into eqn(1) above gives:

$$
\begin{aligned}
|\overrightarrow{P R}| & =|\vec{a}| \cos (\theta) \\
|\overrightarrow{P R}| & =|\vec{a}| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|} \\
& =\frac{\vec{a} \cdot b}{|\vec{b}|} \\
& =\vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} \\
& =\vec{a} \cdot \hat{b}
\end{aligned}
$$

where $\hat{b}=\frac{\vec{b}}{|\vec{b}|}$ is the unit vector ${ }^{3}$ in the direction of \vec{b}.
${ }^{3}$ A unit vector for the vector \vec{b} is denoted by \hat{b} and is the vector \vec{b} divided by it's length $|\vec{b}|$. That is

$$
\hat{b}=\frac{\vec{b}}{|\vec{b}|} .
$$

A unit vector is a vector of length one in the direction of the original vector.

The scalar projection of a vector \vec{a} in the direction of vector \vec{b} is given by:

$$
\begin{aligned}
\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} & =\vec{a} \cdot \hat{b} \\
& =|\vec{a}| \cos \theta
\end{aligned}
$$

Example

Find the scalar projection of the vector $\vec{a}=(2,3,1)$ in the direction of vector $\vec{b}=(5,-2,2)$.

Solution:
The magnitude of \vec{b} is

$$
\begin{aligned}
|\vec{b}| & =\sqrt{5^{2}+(-2)^{2}+2^{2}} \\
& =\sqrt{25+4+4} \\
& =\sqrt{33}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\hat{b} & =\frac{\vec{b}}{|\vec{b}|} \\
& =\frac{(5,-2,2)}{\sqrt{33}} \\
& =\frac{1}{\sqrt{33}}(5,-2,2)
\end{aligned}
$$

so the scalar projection of \vec{a} in the direction of \vec{b} is:

$$
\begin{aligned}
\vec{a} \cdot \hat{b} & =(2,3,1) \cdot \frac{(5,-2,2)}{\sqrt{33}} \\
& =\frac{(2 \times 5)+(3 \times(-2))+(1 \times 2)}{\sqrt{33}} \\
& =\frac{10-6+2}{\sqrt{33}} \\
& =\frac{6}{\sqrt{33}} .
\end{aligned}
$$

Vector Projection

The vector projection of a vector \vec{a} in the direction of vector \vec{b} is a vector in the direction of \vec{b} with magnitude equal to the length of the
straight line $P R$ or $|\overrightarrow{P R}|$ as shown below.

Therefore the vector projection of \vec{a} in the direction of \vec{b} is the scalar projection multiplied by a unit vector in the direction of \vec{b}.
The vector projection of vector \vec{a} in the direction of vector \vec{b} is:

$$
(\vec{a} \cdot \hat{b}) \hat{b}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}
$$

Example 1

Find the vector projection of vector $\vec{a}=(2,3,1)$ in the direction of vector $\vec{b}=(5,-2,2)$.

Solution:
The vector projection \vec{a} in the direction of \vec{b} equals: 4

$$
\begin{aligned}
(\vec{a} \cdot \hat{b}) \hat{b} & =\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}} \\
& =\frac{((2,3,1) \cdot(5,-2,2))(5,-2,2)}{(\sqrt{33})^{2}} \\
& =\frac{(2 \times 5+3 \times(-2)+1 \times 2)(5,-2,2)}{33} \\
& =\frac{(10-6+2)(5,-2,2)}{33} \\
& =\frac{(6)(5,-2,2)}{33}
\end{aligned}
$$

${ }^{4}$ Remember that

$$
\begin{aligned}
|\vec{b}| & =\sqrt{5^{2}+(-2)^{2}+2^{2}} \\
& =\sqrt{33}
\end{aligned}
$$

The vector projection of \vec{a} in the direction of \vec{b} is

$$
\begin{aligned}
\frac{6(5,-2,2)}{33} & =\frac{6}{33}(5,-2,2) \\
& =\frac{2}{11}(5 \hat{i}-2 \hat{j}+2 \hat{k})
\end{aligned}
$$

Example 2

If $\vec{a}=(1,-2,2)$ and $\vec{b}=(5,-2,2)$ find:
(a) The scalar projection of \vec{a} in the direction of \vec{b}.
(b) The vector projection of \vec{a} in the direction of \vec{b}.

Solution:
(a) The scalar projection of \vec{a} in the direction of \vec{b} is $\vec{a} \cdot \hat{b}$.

If

$$
\vec{b}=(5,-2,2)
$$

then

$$
|\vec{b}|=\sqrt{33}
$$

and

$$
\begin{aligned}
\hat{b} & =\frac{\vec{b}}{|\vec{b}|} \\
& =\frac{(5,-2,2)}{\sqrt{33}} \\
& =\frac{1}{\sqrt{33}}(5,-2,2) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{a} \cdot \hat{b} & =(1,-2,2) \cdot \frac{(5,-2,2)}{\sqrt{33}} \\
& =\frac{((1 \times 5)+((-2) \times(-2))+(2 \times 2))}{\sqrt{33}} \\
& =\frac{(5+4+4)}{\sqrt{33}} \\
& =\frac{13}{\sqrt{33}} .
\end{aligned}
$$

The scalar projection is $13 / \sqrt{33}$.
(b) The vector projection of \vec{a} in the direction of \vec{b} is $(\vec{a} \cdot \hat{b}) \hat{b}$ from part (a)

$$
\vec{a} \cdot \hat{b}=\frac{13}{\sqrt{33}}
$$

so that the vector projection of \vec{a} in the direction of \vec{b} is

$$
\begin{aligned}
(\vec{a} \cdot \hat{b}) \hat{b} & =\left(\frac{13}{\sqrt{33}}\right) \frac{(5,-2,2)}{\sqrt{33}} \\
& =\frac{13(5,-2,2)}{33} \\
& =\frac{13}{33}(5,-2,2) \\
& =\frac{13}{33}(5 \hat{i}-2 \hat{j}+2 \hat{k})
\end{aligned}
$$

The vector projection is $\frac{13}{33}(5,-2,2)$ or $\frac{13}{33}(5 \hat{i}-2 \hat{j}+2 \hat{k})$

Exercise 1

For $\vec{a}=(2,3,1), \vec{b}=(5,0,3), \vec{c}=(0,0,3)$ and $\vec{d}=(-2,2,-1)$ find:

1. The scalar projection of \vec{a} in the direction of \vec{b}.

Answer: $\frac{13}{34}$
2. The vector projection of \vec{a} in the direction of \vec{b}. Answer: $\frac{13}{34}(5,0,3)$
3. The scalar projection of \vec{c} in the direction of \vec{b}.

Answer: $\frac{9}{\sqrt{34}}$
4. The vector projection of \vec{c} in the direction of \vec{a}. Answer: $\frac{3}{14}(2,3,1)$
5. The vector projection of \vec{d} in the direction of \vec{a}. Answer: $\frac{1}{14}(2,3,1)$
6. The vector projection of \vec{b} in the direction of \vec{d}. Answer: $\frac{-13}{9}(-2,2,-1)$

Exercise 2

For $\vec{a}=(2,0,-1), \vec{b}=(3,5,6)$ find:

1. Find the scalar projection of \vec{a} in the direction of \vec{b}.

Answer: o
2. What can you say about the relationship between \vec{a} and \vec{b} ?

Answer: \vec{a} and \vec{b} are perpendicular. Remember $\cos 90^{\circ}=0$ and see equation (1) above.

