

V5 Projection of Vectors

There are two types of vector projection:

1. Scalar projection

2. Vector projection

For scalar projection, we calculate the length (a scalar quantity) of a vector in a particular direction.

For vector projection we calculate the vector component of a vector in a given direction.

Often, in Physics, Engineering and Mathematics courses you are asked to resolve a vector into two component vectors that are perpendicular to one another. As an example, in the diagram below a vector \vec{a} is the projection of \vec{F} in the horizontal direction while \vec{b} is the projection of \vec{F} in the vertical direction.

You can project a vector in any direction, not only horizontally and vertically.

This module discusses both scalar and vector projections.

Scalar Projection

Consider the following diagram:

Let $\overrightarrow{PQ} = \vec{a}$ and $\overrightarrow{PS} = \vec{b}$. The scalar projection of the vector \vec{a} in the direction of vector \vec{b} is the length of the straight line *PR* or $|\overrightarrow{PR}|$ where ¹

$$\cos (\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$$
$$= \frac{\left| \overrightarrow{PR} \right|}{\left| \overrightarrow{a} \right|}.$$

Rearranging gives,

$$\left|\overrightarrow{PR}\right| = \left|\overrightarrow{a}\right|\cos\left(\theta\right). \tag{1}$$

 $\vec{a} \cdot \vec{b} = |\vec{a}| \left| \vec{b} \right| \cos\left(\theta\right)$

This may be written in terms of the dot product ².

We know

and so

$$\cos\left(\theta\right) = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \left|\vec{b}\right|}.$$

Substituting this expression for $\cos(\theta)$ into eqn(1) above gives:

$$\begin{vmatrix} \overrightarrow{PR} \end{vmatrix} = |\overrightarrow{a}| \cos (\theta) \\ \left| \overrightarrow{PR} \right| = |\overrightarrow{a}| \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} \\ = \frac{\overrightarrow{a} \cdot b}{|\overrightarrow{b}|} \\ = \overrightarrow{a} \cdot \frac{\overrightarrow{b}}{|\overrightarrow{b}|} \\ = \overrightarrow{a} \cdot \overrightarrow{b}$$

where $\hat{b} = \frac{\vec{b}}{|\vec{b}|}$ is the unit vector³ in the direction of \vec{b} .

¹ Remember that the magnitude (or length) of a vector $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ is denoted by

$$|ec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

For example, if $\vec{v} = 2\vec{i} - 3\vec{j} + \vec{k}$ then

$$|\vec{v}| = \sqrt{2^2 + (-3)^2 + 1^2}$$

= $\sqrt{4 + 9 + 1}$
= $\sqrt{14}$

² The dot product (or scalar product) of two vectors

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
$$\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$$

is defined to be

$$\vec{a} \cdot \vec{b} = |\vec{a}| \left| \vec{b} \right| \cos\left(\theta\right)$$

An alternate definition is

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

³ A unit vector for the vector \vec{b} is denoted by \hat{b} and is the vector \vec{b} divided by it's length $|\vec{b}|$. That is

$$\hat{b} = \frac{\vec{b}}{\left|\vec{b}\right|}.$$

A unit vector is a vector of length one in the direction of the original vector.

The scalar projection of a vector \vec{a} in the direction of vector \vec{b} is given by:

$$\frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|} = \vec{a} \cdot \hat{b}$$
$$= \left| \vec{a} \right| \cos \theta$$

Example

Find the scalar projection of the vector $\vec{a} = (2,3,1)$ in the direction of vector $\vec{b} = (5, -2, 2)$.

Solution:

The magnitude of \vec{b} is

$$\begin{vmatrix} \vec{b} \end{vmatrix} = \sqrt{5^2 + (-2)^2 + 2^2} \\ = \sqrt{25 + 4 + 4} \\ = \sqrt{33} \end{vmatrix}$$

therefore

$$\hat{b} = \frac{\vec{b}}{\left|\vec{b}\right|} = \frac{(5, -2, 2)}{\sqrt{33}} = \frac{1}{\sqrt{33}}(5, -2, 2)$$

so the scalar projection of \vec{a} in the direction of \vec{b} is:

$$\vec{a} \cdot \hat{b} = (2,3,1) \cdot \frac{(5,-2,2)}{\sqrt{33}}$$
$$= \frac{(2 \times 5) + (3 \times (-2)) + (1 \times 2)}{\sqrt{33}}$$
$$= \frac{10 - 6 + 2}{\sqrt{33}}$$
$$= \frac{6}{\sqrt{33}}.$$

Vector Projection

The vector projection of a vector \vec{a} in the direction of vector \vec{b} is a vector in the direction of \vec{b} with magnitude equal to the length of the

straight line *PR* or $\left|\overrightarrow{PR}\right|$ as shown below.

Therefore the vector projection of \vec{a} in the direction of \vec{b} is the scalar projection multiplied by a unit vector in the direction of \vec{b} .

The vector projection of vector \vec{a} in the direction of vector \vec{b} is:

$$\left(ec{a}\cdot\hat{b}
ight)\hat{b}=rac{\left(ec{a}\cdotec{b}
ight)ec{b}}{\left|ec{b}
ight|^2}$$

Example 1

Find the vector projection of vector $\vec{a} = (2,3,1)$ in the direction of vector $\vec{b} = (5, -2, 2)$.

Solution:

The vector projection \vec{a} in the direction of \vec{b} equals:⁴

$$\begin{pmatrix} \vec{a} \cdot \hat{b} \end{pmatrix} \hat{b} = \frac{\left(\vec{a} \cdot \vec{b}\right) \vec{b}}{\left| \vec{b} \right|^2}$$

$$= \frac{\left((2,3,1) \cdot (5,-2,2)\right) (5,-2,2)}{\left(\sqrt{33}\right)^2}$$

$$= \frac{\left(2 \times 5 + 3 \times (-2) + 1 \times 2\right) (5,-2,2)}{33}$$

$$= \frac{\left(10 - 6 + 2\right) (5,-2,2)}{33}$$

$$= \frac{\left(6\right) (5,-2,2)}{33}$$

The vector projection of \vec{a} in the direction of \vec{b} is

$$\frac{6(5,-2,2)}{33} = \frac{6}{33}(5,-2,2)$$
$$= \frac{2}{11}\left(5\hat{i} - 2\hat{j} + 2\hat{k}\right)$$

Example 2

If $\vec{a} = (1, -2, 2)$ and $\vec{b} = (5, -2, 2)$ find:

⁴ Remember that

$$\left| \vec{b} \right| = \sqrt{5^2 + (-2)^2 + 2^2}$$

= $\sqrt{33}$

(*a*) The scalar projection of \vec{a} in the direction of \vec{b} .

(*b*) The vector projection of \vec{a} in the direction of \vec{b} .

Solution:

(*a*) The scalar projection of \vec{a} in the direction of \vec{b} is $\vec{a} \cdot \hat{b}$. If

$$\vec{b} = (5, -2, 2)$$

then

$$\left| \vec{b} \right| = \sqrt{33}$$

$$\hat{b} = \frac{\vec{b}}{\left|\vec{b}\right|} = \frac{(5, -2, 2)}{\sqrt{33}} = \frac{1}{\sqrt{33}} (5, -2, 2).$$

Therefore

$$\vec{a} \cdot \hat{b} = (1, -2, 2) \cdot \frac{(5, -2, 2)}{\sqrt{33}}$$
$$= \frac{((1 \times 5) + ((-2) \times (-2)) + (2 \times 2))}{\sqrt{33}}$$
$$= \frac{(5 + 4 + 4)}{\sqrt{33}}$$
$$= \frac{13}{\sqrt{33}}.$$

The scalar projection is $13/\sqrt{33}$.

(*b*) The vector projection of \vec{a} in the direction of \vec{b} is $(\vec{a} \cdot \hat{b}) \hat{b}$ from part (*a*)

$$\vec{a} \cdot \hat{b} = \frac{13}{\sqrt{33}}$$

so that the vector projection of \vec{a} in the direction of \vec{b} is

$$(\vec{a} \cdot \hat{b}) \hat{b} = \left(\frac{13}{\sqrt{33}}\right) \frac{(5, -2, 2)}{\sqrt{33}} = \frac{13(5, -2, 2)}{33} = \frac{13}{33}(5, -2, 2) = \frac{13}{33} \left(5\hat{i} - 2\hat{j} + 2\hat{k}\right)$$

The vector projection is $\frac{13}{33}(5, -2, 2)$ or $\frac{13}{33}\left(5\hat{i} - 2\hat{j} + 2\hat{k}\right)$

Exercise 1

For $\vec{a} = (2,3,1)$, $\vec{b} = (5,0,3)$, $\vec{c} = (0,0,3)$ and $\vec{d} = (-2,2,-1)$ find:

- 1. The scalar projection of \vec{a} in the direction of \vec{b} . Answer: $\frac{13}{34}$
- 2. The vector projection of \vec{a} in the direction of \vec{b} . Answer: $\frac{13}{34}(5,0,3)$
- 3. The scalar projection of \vec{c} in the direction of \vec{b} . Answer: $\frac{9}{\sqrt{34}}$
- The vector projection of *c* in the direction of *a*.
 Answer: ³/₁₄ (2,3,1)
- 5. The vector projection of \vec{d} in the direction of \vec{a} . Answer: $\frac{1}{14}(2,3,1)$
- 6. The vector projection of \vec{b} in the direction of \vec{d} . Answer: $\frac{-13}{9}(-2,2,-1)$

Exercise 2

For $\vec{a} = (2, 0, -1)$, $\vec{b} = (3, 5, 6)$ find:

- 1. Find the scalar projection of \vec{a} in the direction of \vec{b} . Answer: o
- 2. What can you say about the relationship between \vec{a} and \vec{b} ? Answer: \vec{a} and \vec{b} are perpendicular. Remember $\cos 90^\circ = 0$ and see equation (1) above.