

V4: Vector Product

There are two ways to multiply two vectors:

- The scalar product which gives a number (also called the dot product);
- 2. The vector product which gives a vector (also called the cross product).

In this module we consider the vector or cross product.

Definition

Let \hat{i}, \hat{j} and \hat{k} be unit vectors in the *x*, *y* and *z* directions respectively. We can write

$$\hat{i} = \hat{i} + 0\hat{j} + 0\hat{k} = (1, 0, 0) \hat{j} = 0\hat{i} + \hat{j} + 0\hat{k} = (0, 1, 0) \hat{k} = 0\hat{i} + 0\hat{j} + \hat{k} = (0, 0, 1).$$

Let the vectors

 $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$

and

$$\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}.$$

The vector, or cross, product of the two vectors \vec{a} and \vec{b} is the vector¹

$$\vec{a} \times \vec{b} = |\vec{a}| \left| \vec{b} \right| \sin\left(\theta\right) \, \hat{n} \tag{1}$$

where \hat{n} is a unit vector that is perpendicular to both \vec{a} and \vec{b} and θ is the angle between the vectors \vec{a} and \vec{b} .

¹ Here, $|\vec{a}|$ and $|\vec{b}|$ are the magnitudes of the vectors \vec{a} and \vec{b} .

To calculate the cross product, it is more convenient to use the definition²

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= \hat{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \hat{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \hat{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
$$= \hat{i} (a_2b_3 - b_2a_3) - \hat{j} (a_1b_3 - b_1a_3) + \hat{k} (a_1b_2 - b_1a_2).$$
(2)

Properties of the Vector or Cross Product

- 1. If \vec{a} is parallel to \vec{b} then $\vec{a} \times \vec{b} = \vec{0}$. This follows from eqn (1) above³. Note that we should write the answer as the zero vector $\vec{0}$ instead of the number 0.⁴
- 2. The order in which you take the cross product is important. In fact, $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.
- 3. The direction of $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} in the direction in which your thumb would point if the fingers of your right hand are curled from \vec{a} to \vec{b} as shown below

This is called the right hand rule.

Example 1

Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\vec{i} + 3\vec{j} + \vec{k}$ and $\vec{b} = 5\vec{j} + 3\vec{k}$.

² Here the two vertical delimiters |**A**| denote the determinant of the matrix **A**. For a two by two matrix

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

the determinant

$$|\mathbf{A}| = ad - bc.$$

This is quite different to the magnitude of a vector $|\vec{a}|$.

³ If \vec{a} is parallel to \vec{b} the angle between them is 0. Hence from eqn(1)

$$\vec{a} \times \vec{b} = |\vec{a}| \left| \vec{b} \right| \sin\left(0\right) \, \hat{n}$$
$$= \vec{0}$$

as $\sin(0) = 0$.

⁴ This is a technical point and relates to the concept of a vector space in which certain operations are closed. Closed means if you do operations on a vector you get a vector as a result. In many courses you don't need to worry about this so writing $\vec{a} \times \vec{b} = 0$ may be allowed. Please see you teacher on this point. Solution:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 0 & 5 & 3 \end{vmatrix}$$
$$= \hat{i} (3 \times 3 - 5 \times 1) - \hat{j} (2 \times 3 - 0 \times 1) + \hat{k} (2 \times 5 - 0 \times 3)$$
$$= (9 - 5) \hat{i} - (6 - 0) \hat{j} + (10 - 0) \hat{k}$$
$$= 4\hat{i} - 6\hat{j} + 10\hat{k}.$$

Example 2

Find
$$\vec{a} \times \vec{b}$$
 if $\vec{a} = (2, 1, 1)$ and $\vec{b} = (-2, 4, 0)$.
Solution:

Find $\vec{a} \times \vec{b}$ if $\vec{a} = (2, 1, 1)$ and $\vec{b} = (8, 4, 4)$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 2 & 1 & 1 \\ -2 & 4 & 0 \end{vmatrix}$$
$$= \hat{i} (1 \times 0 - 4 \times 1) - \hat{j} (2 \times 0 - (-2) \times 1) + \hat{k} (2 \times 4 - (-2) \times 1)$$
$$= -4\hat{i} - 2\hat{j} + 10\hat{k}.$$

Example 3

```
Solution:

\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 8 & 4 & 4 \end{vmatrix}

= \hat{i} (1 \times 4 - 4 \times 1) - \hat{j} (2 \times 4 - 8 \times 1) + \hat{k} (2 \times 4 - 8 \times 1)

= 0\hat{i} - 0\hat{j} + 0\hat{k}

= 0\hat{i} + 0\hat{j} + 0\hat{k}

= (0, 0, 0)

= \vec{0}.
```

Note that $0\hat{i} - 0\hat{j} + 0\hat{k} = 0\hat{i} + 0\hat{j} + 0\hat{k}$ and that the answer is the **vector** $(0,0,0) = \vec{0}$, not simply the number 0 (see footnote 2 above).

Since neither $|\vec{a}|$ nor $|\vec{b}|$ is zero, from equation (1) above, we can see that $\sin(\theta) = 0$ and so $\theta = 0$ or $\theta = \pi$. That is the vectors \vec{a} and \vec{b} are in the same or opposite directions. This result could be more quickly obtained by observing that $\vec{b} = 4\vec{a}$ and so \vec{a} and \vec{b} are parallel and by property (1) of the vector product above, $\vec{a} \times \vec{b} = \vec{0}$.

Cartesian Unit Vectors

Let \hat{i}, \hat{j} and \hat{k} be unit vectors in the *x*, *y* and *z* directions respectively. Then

$$\begin{aligned} \hat{i} \times \hat{j} &= \hat{k} & \hat{j} \times \hat{k} &= \hat{i} & \hat{k} \times \hat{i} &= \hat{j} \\ \hat{i} \times \hat{k} &= -\hat{j} & \hat{k} \times \hat{j} &= -\hat{i} & \hat{j} \times \hat{i} &= -\hat{k}. \end{aligned}$$

These results may be confirmed with the right hand rule or equation (2) above.

Example 4

Find $\hat{i} \times \hat{k}$. Solution: We have

$$\hat{i} = \hat{i} + 0\hat{j} + 0\hat{k}$$
$$\hat{k} = 0\hat{i} + 0\hat{j} + \hat{k}.$$

Using equation (2) ,

$$\hat{i} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

= $\hat{i} (1 \times 0 - 0 \times 0) - \hat{j} (1 \times 1 - 0 \times 0) + \hat{k} (1 \times 0 - 0 \times 0)$
= $-\hat{j}.$

Exercise 1

Calculate the following.

1.
$$j \times k$$
.
2. $\hat{i} \times 4\hat{i}$.
3. $(2\hat{i}+3\hat{j}-\hat{k}) \times (3\hat{j}+2\hat{k})$.
4. $3\hat{j} \times 5\hat{i}$.
5. $(\hat{i}-3\hat{j}+\hat{k}) \times (2\hat{i}+\hat{j}-\hat{k})$.

Answers

1.
$$\hat{i}$$
 2. $\hat{0}$ **3.** $9\hat{i} - 4\hat{j} + 6\hat{k}$ **4.** $-15\hat{k}$ **5.** $\left(2\hat{i} + 3\hat{j} + 7\hat{k}\right)$.

Exercise 2

Find a unit vector perpendicular to both $(\vec{i} - \vec{k})$ and $(\vec{i} + 3\vec{j} - 2\vec{k})$.

Answer

$$\frac{(3,1,3)}{\sqrt{19}}$$
 or $-\frac{(3,1,3)}{\sqrt{19}}$.