V4: Vector Product

There are two ways to multiply two vectors:

1. The scalar product which gives a number (also called the dot product);
2. The vector product which gives a vector (also called the cross product).

In this module we consider the vector or cross product.

Definition

Let \hat{i}, \hat{j} and \hat{k} be unit vectors in the x, y and z directions respectively. We can write

$$
\begin{aligned}
\hat{i} & =\hat{i}+0 \hat{j}+0 \hat{k} \\
& =(1,0,0) \\
\hat{j} & =0 \hat{i}+\hat{j}+0 \hat{k} \\
& =(0,1,0) \\
\hat{k} & =0 \hat{i}+0 \hat{j}+\hat{k} \\
& =(0,0,1) .
\end{aligned}
$$

Let the vectors

$$
\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}
$$

and

$$
\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
$$

The vector, or cross, product of the two vectors \vec{a} and \vec{b} is the vector ${ }^{1}$

$$
\begin{equation*}
\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin (\theta) \hat{n} \tag{1}
\end{equation*}
$$

where \hat{n} is a unit vector that is perpendicular to both \vec{a} and \vec{b} and θ is the angle between the vectors \vec{a} and \vec{b}.
${ }^{1}$ Here, $|\vec{a}|$ and $|\vec{b}|$ are the magnitudes of the vectors \vec{a} and \vec{b}.

To calculate the cross product, it is more convenient to use the definition ${ }^{2}$

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\hat{i}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\hat{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\hat{i}\left(a_{2} b_{3}-b_{2} a_{3}\right)-\hat{j}\left(a_{1} b_{3}-b_{1} a_{3}\right)+\hat{k}\left(a_{1} b_{2}-b_{1} a_{2}\right) . \tag{2}
\end{align*}
$$

Properties of the Vector or Cross Product

1. If \vec{a} is parallel to \vec{b} then $\vec{a} \times \vec{b}=\overrightarrow{0}$. This follows from eqn (1) above ${ }^{3}$. Note that we should write the answer as the zero vector $\overrightarrow{0}$ instead of the number 0.4
2. The order in which you take the cross product is important. In fact, $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$.
3. The direction of $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} in the direction in which your thumb would point if the fingers of your right hand are curled from \vec{a} to \vec{b} as shown below

This is called the right hand rule.
${ }^{2}$ Here the two vertical delimiters $|\mathbf{A}|$ denote the determinant of the matrix \mathbf{A}. For a two by two matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant

$$
|\mathbf{A}|=a d-b c
$$

This is quite different to the magnitude of a vector $|\vec{a}|$.
${ }^{3}$ If \vec{a} is parallel to \vec{b} the angle between them is 0 . Hence from eqn(1)

$$
\begin{aligned}
\vec{a} \times \vec{b} & =|\vec{a}||\vec{b}| \sin (0) \hat{n} \\
& =\overrightarrow{0}
\end{aligned}
$$

as $\sin (0)=0$.
${ }^{4}$ This is a technical point and relates to the concept of a vector space in which certain operations are closed. Closed means if you do operations on a vector you get a vector as a result. In many courses you don't need to worry about this so writing $\vec{a} \times \vec{b}=0$ may be allowed. Please see you teacher on this point.

Example 1

Find $\vec{a} \times \vec{b}$ if $\vec{a}=2 \vec{i}+3 \vec{j}+\vec{k}$ and $\vec{b}=5 \vec{j}+3 \vec{k}$.

Solution:

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 1 \\
0 & 5 & 3
\end{array}\right| \\
& =\hat{i}(3 \times 3-5 \times 1)-\hat{j}(2 \times 3-0 \times 1)+\hat{k}(2 \times 5-0 \times 3) \\
& =(9-5) \hat{i}-(6-0) \hat{j}+(10-0) \hat{k} \\
& =4 \hat{i}-6 \hat{j}+10 \hat{k} .
\end{aligned}
$$

Example 2

Find $\vec{a} \times \vec{b}$ if $\vec{a}=(2,1,1)$ and $\vec{b}=(-2,4,0)$.

Solution:

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 1 \\
-2 & 4 & 0
\end{array}\right| \\
& =\hat{i}(1 \times 0-4 \times 1)-\hat{j}(2 \times 0-(-2) \times 1)+\hat{k}(2 \times 4-(-2) \times 1) \\
& =-4 \hat{i}-2 \hat{j}+10 \hat{k} .
\end{aligned}
$$

Example 3

Find $\vec{a} \times \vec{b}$ if $\vec{a}=(2,1,1)$ and $\vec{b}=(8,4,4)$.
Solution:

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 1 \\
8 & 4 & 4
\end{array}\right| \\
& =\hat{i}(1 \times 4-4 \times 1)-\hat{j}(2 \times 4-8 \times 1)+\hat{k}(2 \times 4-8 \times 1) \\
& =0 \hat{i}-0 \hat{j}+0 \hat{k} \\
& =0 \hat{i}+0 \hat{j}+0 \hat{k} \\
& =(0,0,0) \\
& =\overrightarrow{0}
\end{aligned}
$$

Note that $0 \hat{i}-0 \hat{j}+0 \hat{k}=0 \hat{i}+0 \hat{j}+0 \hat{k}$ and that the answer is the vector $(0,0,0)=\overrightarrow{0}$, not simply the number 0 (see footnote 2 above).

Since neither $|\vec{a}|$ nor $|\vec{b}|$ is zero, from equation (1) above, we can see that $\sin (\theta)=0$ and so $\theta=0$ or $\theta=\pi$. That is the vectors \vec{a} and \vec{b} are in the same or opposite directions. This result could be more quickly obtained by observing that $\vec{b}=4 \vec{a}$ and so \vec{a} and \vec{b} are parallel and by property (1) of the vector product above, $\vec{a} \times \vec{b}=\overrightarrow{0}$.

Cartesian Unit Vectors

Let \hat{i}, \hat{j} and \hat{k} be unit vectors in the x, y and z directions respectively.
Then

$$
\begin{array}{lll}
\hat{i} \times \hat{j}=\hat{k} & \hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{i}=\hat{j} \\
\hat{i} \times \hat{k}=-\hat{j} & \hat{k} \times \hat{j}=-\hat{i} & \hat{j} \times \hat{i}=-\hat{k} .
\end{array}
$$

These results may be confirmed with the right hand rule or equation (2) above.

Example 4

Find $\hat{i} \times \hat{k}$.

Solution:

We have

$$
\begin{aligned}
\hat{i} & =\hat{i}+0 \hat{j}+0 \hat{k} \\
\hat{k} & =0 \hat{i}+0 \hat{j}+\hat{k}
\end{aligned}
$$

Using equation (2),

$$
\begin{aligned}
\hat{i} \times \hat{k} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =\hat{i}(1 \times 0-0 \times 0)-\hat{j}(1 \times 1-0 \times 0)+\hat{k}(1 \times 0-0 \times 0) \\
& =-\hat{j} .
\end{aligned}
$$

Exercise 1

Calculate the following.

1. $\hat{j} \times \hat{k}$.
2. $\hat{i} \times 4 \hat{i}$.
3. $(2 \hat{i}+3 \hat{j}-\hat{k}) \times(3 \hat{j}+2 \hat{k})$.
4. $3 \hat{j} \times 5 \hat{i}$.
5. $(\hat{i}-3 \hat{j}+\hat{k}) \times(2 \hat{i}+\hat{j}-\hat{k})$.

Answers

1. $\begin{array}{lll}\hat{i} & \text { 2. } \hat{0} \quad 3 \cdot 9 \hat{i}-4 \hat{j}+6 \hat{k}\end{array}$
2. $-15 \hat{k}$
3. $(2 \hat{i}+3 \hat{j}+7 \hat{k})$.

Exercise 2

Find a unit vector perpendicular to both $(\vec{i}-\vec{k})$ and $(\vec{i}+3 \vec{j}-2 \vec{k})$.

Answer
$\frac{(3,1,3)}{\sqrt{19}}$ or $-\frac{(3,1,3)}{\sqrt{19}}$.

