V3: Scalar Product

There are two ways to multiply two vectors:

1. The scalar or dot product which gives a number;
2. The vector or cross product which gives a vector.

In this module we consider the scalar or dot product.

Definition

The scalar, or dot, product of two vectors $\vec{a}\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}\left(b_{1}, b_{2}, b_{3}\right)$ is a scalar, defined by:

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

or geometrically,

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and \vec{b}.

Properties of the Scalar or Dot Product

1. If \vec{a} and \vec{b} are non-zero vectors and \vec{a} is perpendicular ${ }^{1}$ to \vec{b} then $\vec{a} \cdot \vec{b}=0$, since $\cos \left(\frac{\pi}{2}\right)=0$.
2. If \vec{a} is parallel to \vec{b} then the angle between the vectors is 0 and $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$ as $\cos (0)=1$.
${ }^{1}$ Perpendicular means at right angles to. A right angle is $90^{\circ}=\pi / 2$.
3. The dot product does not depend on the order of multiplication:

$$
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
$$

4. In three dimensions with $\hat{i} \hat{j}$ and \hat{k} unit vectors along the x, y and z axes respectively, we have:

$$
\begin{aligned}
& \vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{i}=0 \\
& \vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1
\end{aligned}
$$

Examples

1. $(2 \vec{i}+3 \vec{j}+4 \vec{k}) \cdot(-\vec{i}-2 \vec{j}+\vec{k})=(2 \times(-1))+(3 \times(-2))+$ $(4 \times 1)=-4$
2. $(2,-3,-3) \cdot(1,1,-2)=2-3+6=5$
3. $(5,0,-1) \cdot(1,4,3)=5+0-3=2$
4. $(2 \vec{i}+4 \vec{k}) \cdot(-3 \vec{i}-2 \vec{j})=2 \times(-3)+0 \times(-2)+4 \times 0=-6$

See Exercises 1, 2, and 3.

Angle Between Two Vectors

The angle θ, $(0 \leq \theta \leq \pi)$, between two vectors can be found using the definition of the dot product:

$$
\vec{a} \cdot \vec{b}=|\vec{a} \| \vec{b}| \cos \theta .
$$

Rearranging,

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

and

$$
\theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right) .
$$

Examples

1. If $\vec{a}=(2,3,1)$ and $\vec{b}=(5,-2,2)$ find the angle θ, between \vec{a} and \vec{b}

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right) \\
\vec{a} \cdot \vec{b} & =(2,3,1) \cdot(5,-2,2)=6 \\
|\vec{a}| & =\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14},|\vec{b}|=\sqrt{25+4+4}=\sqrt{33} \\
\theta & =\cos ^{-1}\left(\frac{6}{\sqrt{33} \times \sqrt{14}}\right) \\
& =\cos ^{-1}(0.2791) \\
\theta & =73.8^{\circ} .
\end{aligned}
$$

The angle between \vec{a} and \vec{b} is 73.8°.
2. Find the angle θ, between $\vec{a}(1,0,1)$ and $\vec{b}(-2,-1,1)$.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(1,0,1) \cdot(-2,-1,1)=-1 \\
|\vec{a}| & =\sqrt{2} \\
|\vec{b}| & =\sqrt{6} \\
\theta & =\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)=\cos ^{-1}\left(\frac{-1}{\sqrt{2} \times \sqrt{6}}\right)=\cos ^{-1}(-0.2887) \\
\theta & =106.8^{\circ}
\end{aligned}
$$

The angle between \vec{a} and \vec{b} is 106.8°.
See Exercises 4 and 5 .

Exercise 1

Calculate the dot product of:
(a) $(2,5,-1)$ and $(4,1,1)$
(b) $3 \vec{i}$ and $5 \vec{j}$
(c) $5 \vec{k}$ and $(\vec{j}+2 \vec{k})$

Answers:
(a) 12
(b) 0
(c) 10

Exercise 2

Find:
(a) $(2,0,4) \cdot(-3,1,3)$
(b) $(0,5,1) \cdot(4,0,0)$
(c) $(2 \vec{i}+3 \vec{k}) \cdot(7 \vec{i}+2 \vec{j}+4 \vec{k})$

Answers:
(a) 6
$\begin{array}{ll}\text { (b) } 0 & \text { (c) } 26\end{array}$

Exercise 3

Which of the following vectors are perpendicular?
(a) $(5,2,3)$
(b) $(0,1,-1)$
(c) $(-2,2,2)$

Answers:
(a) and (c), (b) and (c)

Exercise 4

Find the angle between the following pairs of vectors:
(a) $(1,2,3)$ and $(4,-1,0)$
(b) $(2,1,-2)$ and $(1,5,-1)$
(c) $(0,5,1)$ and $(2,0,0)$
(d) $(1,-2,3)$ and $(-4,1,-3)$
(e) $(2,1,-2)$ and $(0,4,0)$
(f) $(0,3,0)$ and $(0,1,0)$

Answers:
(a) 82.6°
(b) 54.7°
(c) 90°
(d) 141.8°
(e) 70.5°
(f) 0°

Exercise 5

If $\vec{a}=(2,2,2), \vec{b}=(3,2,-1)$, and $\vec{c}=(-1,4,1)$,
(a) Show $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$
(b) Rearranging $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ gives $\vec{a} \cdot(\vec{b}-\vec{c})=0$. As $\vec{b} \neq \vec{c}$ what is the relationship between \vec{a} and $(\vec{b}-\vec{c})$?

Answers:
(a) $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=8 \quad(b) \vec{a}$ is perpendicular to $(\vec{b}-\vec{c})$.

