V11: Directional Derivatives

You will recall that the derivative of a function gives us the gradient or rate of change of the function. The rate of change of a function such as $z=f(x, y)$ can be found by partial differentiation; $\frac{\partial f}{\partial x}$ gives the rate of change of the function f, with respect to x, that is, the gradient of the graph as we move in the x direction. Keep in mind that the graph of $z=f(x, y)$ is a surface in three dimensional space and $\frac{\partial f}{\partial y}$ gives the rate of change of f with respect to y, that is, the gradient of the graph as we move in the y direction.

Directional Derivatives

We can find the rate of change of a function in any direction (not just in the direction of the x - axis or y - axis) by finding the directional derivative.

The directional derivative of a function f in the direction of a vector \vec{u} is denoted by D_{u} and is given by: ${ }^{1}$

$$
D_{u}=\nabla f \cdot \hat{u}
$$

where \hat{u} is a unit vector ${ }^{2}$ in the direction of the vector \vec{u}. The following figure illustrates the meaning of the directional derivative:

${ }^{1}$ Note that the function f may be of 2 or more variables.
${ }^{2}$ A unit vector is a vector of magnitude 1 . For a vector \vec{u} a unit vector in the direction of \vec{u} is given by

$$
\hat{u}=\frac{1}{|\vec{u}|} \vec{u}
$$

where $|\vec{u}|$ is the magnitude of the vector \vec{u}.

Example 1

Suppose that we wish to find the directional derivative of $f(x, y)=$ $x^{2}+y^{2}$ at the point $(2,3)$ in the direction of the vector $\vec{u}=4 \vec{i}-3 \vec{j}$.

Solution:
The first step is to find the vector "grad f ", symbolised thus ∇f.

$$
\nabla f=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f_{\vec{j}}}{\partial y} .
$$

In this particular case

$$
\begin{aligned}
\nabla f & =2 x \vec{i}+2 y \vec{j} \\
& =4 \vec{i}+6 \vec{j}
\end{aligned}
$$

at the point where $x=2$ and $y=3$.
The next step is to find the dot product of this vector ∇f, and \hat{u}, the unit vector in the direction of \vec{u}.

In this case $\vec{u}=4 i-3 j$, therefore $\hat{u}=\frac{1}{5}(4 i-3 j)$
Hence the directional derivative of f in the direction of u is

$$
\begin{aligned}
D_{u} & =(4 i+6 j) \cdot\left(\frac{4}{5} i-\frac{3}{5} j\right) \\
& =\frac{16}{5}-\frac{18}{5} \\
& =-\frac{2}{5} .
\end{aligned}
$$

To generalise the above, the directional derivative of a function, f, in the direction of u is

$$
D_{u}=\nabla f \cdot \hat{u}
$$

where

$$
\nabla f=\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j+\frac{\partial f}{\partial z} k
$$

Since the directional derivative relies on a dot product, (remember $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$), it will be a maximum when $\cos \theta$ is maximum (that is, $\cos \theta=1$), so the directional derivative will be maximum when $\theta=0$.

In other words, we can say that

- D_{u} will be maximum when \vec{u} and ∇f are in the same direction.
- D_{u} will have its greatest negative value when u and ∇f are in opposite directions (when $\theta=\pi$).
- D_{u} will be zero when u and ∇f are at right angles.

Example 2

If $f(x, y, z)=x^{2}+y^{2}+x y z$, find a unit vector \hat{u} such that the rate of change of f at $(2,3,-1)$ in the direction of u is maximum.

Solution:

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k} \\
& =(2 x+y z) \hat{i}+(2 y+x z) \hat{j}+(x y) \hat{k} \\
& =\hat{i}+4 \hat{j}+6 \hat{k}
\end{aligned}
$$

For the directional derivative to be maximum, $u=\nabla f$
Therefore $u=\hat{i}+4 \hat{j}+6 \hat{k}$ and $\hat{u}=\frac{1}{\sqrt{53}}(\hat{i}+4 \hat{j}+6 \hat{k})$.

Exercise

1. Find the directional derivative of the given function at the given point in the direction of the indicated vector:
a) $f(x, y)=x y^{2},(3,2), 4 \hat{i}+3 \hat{j}$
b) $f(x, y)=e^{x y},(0,2), \hat{i}$
c) $f(x, y, z)=x^{2} y^{3} z,(2,-1,3), \hat{i}-2 \hat{j}-2 \hat{k}$

Answers:
$\begin{array}{lll}\text { a) } \frac{52}{5} & \text { b) } 2 & \text { c) }-\frac{76}{3} \text {. }\end{array}$
2. Find the unit vector in the direction in which f increases most
rapidly at $P(1, \pi / 2)$ for $f(x, y)=x^{2}+\cos x y$.
Answer:
$\hat{u}=0.394 \hat{i}-0.919 \hat{j}$.

