

V11: Directional Derivatives

You will recall that the derivative of a function gives us the gradient or rate of change of the function. The rate of change of a function such as z = f(x, y) can be found by partial differentiation; $\frac{\partial f}{\partial x}$ gives the rate of change of the function f, with respect to x, that is, the gradient of the graph as we move in the x direction. Keep in mind that the graph of z = f(x, y) is a surface in three dimensional space and $\frac{\partial f}{\partial y}$ gives the rate of change of f with respect to y, that is, the gradient of the graph as we move in the y direction.

Directional Derivatives

We can find the rate of change of a function in any direction (not just in the direction of the x- axis or y- axis) by finding the directional derivative.

The directional derivative of a function f in the direction of a vector \vec{u} is denoted by D_u and is given by:¹

¹ Note that the function f may be of 2 or more variables.

$$D_u = \nabla f \cdot \hat{u}$$

where \hat{u} is a unit vector² in the direction of the vector \vec{u} . The following figure illustrates the meaning of the directional derivative:

² A unit vector is a vector of magnitude 1. For a vector \vec{u} a unit vector in the direction of \vec{u} is given by

$$\hat{u} = \frac{1}{|\vec{u}|}\vec{u}$$

where $|\vec{u}|$ is the magnitude of the vector \vec{u} .

Example 1

Suppose that we wish to find the directional derivative of $f(x, y) = x^2 + y^2$ at the point (2,3) in the direction of the vector $\vec{u} = 4\vec{i} - 3\vec{j}$.

Solution:

The first step is to find the vector "grad f", symbolised thus ∇f .

$$\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}.$$

In this particular case

$$\nabla f = 2x\vec{i} + 2y\vec{j}$$
$$= 4\vec{i} + 6\vec{j}$$

at the point where x = 2 and y = 3.

The next step is to find the dot product of this vector ∇f , and \hat{u} , the unit vector in the direction of \vec{u} .

In this case $\vec{u} = 4i - 3j$, therefore $\hat{u} = \frac{1}{5} (4i - 3j)$ Hence the directional derivative of *f* in the direction of *u* is

$$D_u = (4i+6j) \cdot \left(\frac{4}{5}i - \frac{3}{5}j\right)$$
$$= \frac{16}{5} - \frac{18}{5}$$
$$= -\frac{2}{5}.$$

To generalise the above, the directional derivative of a function, f, in the direction of u is

$$D_u = \nabla f \cdot \hat{u}$$

where

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k.$$

Since the directional derivative relies on a dot product, (remember $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$), it will be a maximum when $\cos \theta$ is maximum (that is, $\cos \theta = 1$), so the directional derivative will be maximum when $\theta = 0$.

In other words, we can say that

- D_u will be maximum when \vec{u} and ∇f are in the same direction.
- D_u will have its greatest negative value when u and ∇f are in opposite directions (when $\theta = \pi$).
- D_u will be zero when u and ∇f are at right angles.

Example 2

If $f(x, y, z) = x^2 + y^2 + xyz$, find a unit vector \hat{u} such that the rate of change of f at (2, 3, -1) in the direction of u is maximum.

Solution:

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$$

= $(2x + yz)\hat{i} + (2y + xz)\hat{j} + (xy)\hat{k}$
= $\hat{i} + 4\hat{j} + 6\hat{k}$

For the directional derivative to be maximum, $u = \nabla f$ Therefore $u = \hat{i} + 4\hat{j} + 6\hat{k}$ and $\hat{u} = \frac{1}{\sqrt{53}} \left(\hat{i} + 4\hat{j} + 6\hat{k}\right)$.

Exercise

1. Find the directional derivative of the given function at the given point in the direction of the indicated vector:

a) $f(x,y) = xy^2$, (3,2), $4\hat{i} + 3\hat{j}$ b) $f(x,y) = e^{xy}$, (0,2), \hat{i} c) $f(x,y,z) = x^2y^3z$, (2,-1,3), $\hat{i} - 2\hat{j} - 2\hat{k}$ Answers: a) $\frac{52}{5}$ b) 2 c) $-\frac{76}{3}$. 2. Find the unit vector in the direction in which f increases most

rapidly at $P(1, \pi/2)$ for $f(x, y) = x^2 + \cos xy$.

Answer:
$$\hat{u} = 0.394\hat{i} - 0.919\hat{j}.$$