V10. Distance from a Point to a Plane

What do we mean when we talk about distance from a point to a plane? Consider the figure below. Here the x-axis is in red, the y-axis is in green and the z-axis is in blue. The grey plane is the $x-y$ plane, it extends in all directions. The aqua plane also extends in all directions.

You can have any number of distances from a point A to the aqua colored plane. For example, the distance from point A to point P is one possible answer while the distance from point A to point $P 1$ is another. This makes no sense. The only interpretation of the question that provides a unique answer is "Find the shortest distance from a point to a plane". This means we want to find the perpendicular distance from the point to the plane.

When you are asked to find the distance from a point to a plane, you must find the shortest distance from a point to the plane.

Shortest Distance from a Point to a Plane

Consider the figure below. Here, the axes are exactly the same as the figure above. To find the shortest distance from a point A to the aqua colored plane we first choose any point on the plane P as shown
below. Now define a vector from P to $A, \overrightarrow{P A}$. The shortest distance d is then ${ }^{1}$

$$
\begin{equation*}
d=\overrightarrow{P A} \cdot \hat{n} \tag{1}
\end{equation*}
$$

where \hat{n} is a unit normal to the plane.

This may be easier to understand if we rotate the picture above so that we view the aqua plane "edge on" as shown below. ${ }^{2}$

The distance d is often referred to as the scalar resolute of $\overrightarrow{P A}$ in the direction of \vec{n}.

Unit Normal to a Plane

To get the distance from a plane to a point, we need to get a unit normal to the plane. For a plane

$$
a x+b y+c z=d
$$

a normal vector is $a \hat{i}+b \hat{j}+c \hat{k}$. For example, the plane

$$
2 x+3 y-6 z=20
$$

${ }^{1}$ This is sometimes called the scalar resolute of $\overrightarrow{P A}$ in the direction of \hat{n}. Since the unit vector

$$
\hat{n}=\frac{\vec{n}}{|\vec{n}|}
$$

we can express the distance as

$$
\begin{aligned}
d & =\overrightarrow{P A} \cdot \hat{n} \\
& =\overrightarrow{P A} \cdot \frac{\vec{n}}{|\vec{n}|} .
\end{aligned}
$$

[^0]has a normal
$$
\vec{n}=2 \hat{i}+3 \hat{j}-6 \hat{k}
$$

To create a unit normal \hat{n} we divide the normal \vec{n} by it's length $|\vec{n}|, 3$

$$
\begin{aligned}
|\vec{n}| & =\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}} \\
& =\sqrt{2^{2}+3^{2}+(-6)^{2}} \\
& =\sqrt{49} \\
& =7 .
\end{aligned}
$$

So a unit normal to the plane is

$$
\begin{aligned}
\hat{n} & =\frac{\vec{n}}{|\vec{n}|} \\
& =\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})
\end{aligned}
$$

Example

Find the distance from the point $(2,5,4)$ to the plane $x+2 y+2 z=2$.
Solution:
Let point $A=(2,5,4)$. Now find a point on the plane ${ }^{4}$ We take $P=(2,0,0)$. The vector from P to A is

$$
\begin{aligned}
\overrightarrow{P A} & =2 \hat{i}+5 \hat{j}+4 \hat{k}-(2 \hat{i}+0 \hat{j}+0 \hat{k}) \\
& =5 \hat{j}+4 \hat{k}
\end{aligned}
$$

We now need to find a unit vector that is normal to the plane. A normal vector is

$$
\vec{n}=\hat{i}+2 \hat{j}+2 \hat{k}
$$

A unit normal vector is

$$
\begin{aligned}
\hat{n} & =\frac{\vec{n}}{|\vec{n}|} \\
& =\frac{\hat{i}+2 \hat{j}+2 \hat{k}}{\sqrt{1^{2}+2^{2}+2^{2}}} \\
& =\frac{\hat{i}+2 \hat{j}+2 \hat{k}}{\sqrt{9}} \\
& =\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k}) .
\end{aligned}
$$

Using (1) above, the distance d, from $A=(2,5,4)$ to the plane

$$
x+2 y+2 z=2
$$

${ }^{3}$ The length of a vector $\vec{n}=n_{1} \hat{i}+n_{2} \hat{j}+$ $n_{3} \hat{k}$ is denoted $|\vec{n}|$ and

$$
|\vec{n}|=\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}} .
$$

${ }^{4}$ It can be ANY point. So to make it easy, we can take $y=z=0$. Substituting in the equation for the plane we get $x=2$. So the point $P=(2,0,0)$ is on the plane.
is

$$
\begin{aligned}
d & =\overrightarrow{P A} \cdot \hat{n} \\
& =(5 \hat{j}+4 \hat{k}) \cdot \frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& =\frac{1}{3}(10+8) \\
& =6 .
\end{aligned}
$$

Exercises

Find the distance from the given point to the given plane:

1. $(0,0,0) ; 2 x+3 y-z=6$.
2. $(-1,1,2) ; x+y=2$.
3. $(1,2,3) ; 3 x+4 y-z=1$.

Answers

1. $\frac{6}{\sqrt{14}}$.
2. $\sqrt{2}$.
3. $\frac{7}{\sqrt{26}}$.

[^0]: ${ }^{2}$ Note that if we take this viewpoint, the distance d does not change as we rotate the plane about the unit normal vector. This means the perpendicular distance d does not depend on how you view the problem.

