STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

PME1.7: RULES FOR SIGNIFICANT FIGURES

In scientific measurements, significant figures are used to indicate the accuracy of a measurement. The last digit in a measurement is often an estimate, a good guess.

All the digits in a measured value, including the last estimated digit, are called significant figures or significant digits.

Consider a series of measurements made with (a) an old wooden ruler without mm marks, (b) a more accurate steel ruler, (c) steel callipers with a Vernier scale.

	Reported Result	Number of	Accuracy of	Implied range of
		Significant Figures	measurement	possible values
		in the measurement		
(a)	7 cm	1	To the nearest 1 cm,	6.5 cm – 7.5 cm
			ie 7 \pm 0.5 cm	
(b)	7.2 cm	2	To the nearest 0.1 cm,	7.15 – 7.25 cm
			ie 7.2 ± 0.05 cm	
(C)	7.23	3	To the nearest 0.01	7.225 – 7.235 cm
			cm,	
			ie 7.23 ± 0.005 cm	

The number of Significant Figures in a measured value

Rule 1 Any non-zero digit is significant. The position of a decimal point makes no difference.

Example 1	15.7	3	sig. figs
	157	3	sig. figs
	1.57	3	sig. figs
	2.7942	5	sig. figs

Rule 2 Zeros between numbers are significant.

Example 2	1.05	3	sig. figs
	10.51	4	sig. figs
	200.708	6	sig. figs

Rule 3 Zeros at the right hand end of whole numbers are **not** significant, unless otherwise stated.

Example 3	70	1	sig. figs
	2860	3	sig. figs
	15090	4	sig. figs

Rule 4 Zeros at the left hand end of decimal numbers are **not** significant.

Example 4	0.28	2	sig. figs
	0.0039	2	sig. figs
	0.0604	3	sig. figs

Rule 5 Zeros at the right hand end of decimal numbers are significant.

12.0	3	sig. figs
0.760	3	sig. figs
0.48300	5	sig. figs
2.07090	6	sig. figs
	12. 0 0.760 0.48300 2.07090	12.0 3 0.760 3 0.48300 5 2.07090 6

Significant Figures and Scientific Notation

The problems of deciding how many significant figures a value has is simplified by writing its value in

Scientific Notation.

Examine the number of digits in the first number below, <u>not</u> in the power of ten.

(a)	$0.0003 = 3 \times 10^{-4}$	1 sig fig	Rule 4
(b)	$720000 = 7.2 \times 10^5$	2 sig figs	Rule 3
(c)	$660 = 6.6 \times 10^2$	2 sig figs	Rule 3
(d)	$660.0 = 6.600 \times 10^2$	4 sig figs	Rule 5
(e)	$0.66000 = 6.6000 \times 10^{-1}$	5 sig figs	Rule 5
(f)	$808.01 = 8.0801 \times 10^2$	5 sig figs	Rule 2

Recording measurements and Significant Figures Consider the scale below.

The measurement x is:

- Certainly greater than 6 and less then 7
- Certainly greater than 6.5 and less than 6.6
- Very probably greater than 6.53 and less than 6.55

The result would be recorded as 6.54 - a value with 3 significant digits. The first two digits are certain and the last is a good estimate.

Writing "6.54" implies " 6.54 ± 0.005 ", ie between 6.535 and 6.545, unless otherwise stated.

Exercise

Write each of the following measurements in Scientific Notation and state the number of significant digits in the value.

(a)	345	(b)	17642	(c)	0.0033	(d)	0.000306
(e)	870	(f)	20000	(g)	140.600	(h)	710.0
(i)	0.04080	(j)	0.0050				

Answers Exercise

345	3.45×10^{2}	3 sig figs
17642	1.7642×10^{4}	5 sig figs
0.0033	3.3×10^{-3}	2 sig figs
0.000306	3.06×10^{-4}	3 sig figs
870	8.7×10^{2}	2 sig figs
20000	2×10^4	1 sig fig
140.600	1.40600×10^2	6 sig figs
710.0	7.100×10^2	4 sig figs
0.04080	4.080×10^{-2}	4 sig figs
0.0050	5.0×10^{-3}	2 sig figs
	345 17642 0.0033 0.000306 870 20000 140.600 710.0 0.04080 0.0050	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$