S9 Normal Distributions

Introduction

This module introduces the normal distribution. Data that is normally distributed is characterized by a bell shaped curve when displayed graphically.

Graphical representations of data may look quite different as shown below:

But many things that can be measured, such as

- heights of people
- blood pressure
- errors in measurement
- scores on a test
follow a bell shaped curve like the figure below.

Such data is said to be normally distributed.

Properties of a Normal Distribution

1. Symmetry about the mean
2. Mean $=$ median $=$ mode
3. 50% of values greater than the mean and 50% less than the mean
4. 68% of values fall within one standard deviation either side of the mean (approximately)
5. 95% of values fall within two standard deviations either side of the mean (approximately)
6. 99.7% of values fall within three standard deviation either side of the mean (approximately)

Note: Even though most of the data will fall within three standard deviations of the mean there is in theory, no upper or lower bound to a normal distribution. We are just less and less likely to find values beyond these points.

Example

If scores on an IQ test are normally distributed with mean $=100$ and standard deviation $=10$, what percentage of people would we expect to
(a) score between 90 and 110 ?
(b) score less than 80 ?

Solution:
(a) Because $90=100-10$ and $110=100+10$ are both one standard deviation from the mean, 68% of people would be expected to score between 90 and 110 .
(b) $80=100-2 \times 10$ is two standard deviations below the mean. We know that 95% of scores fall between 80 and 120 so 5% must fall outside this range. Half of these, 2.5%, will be below 80 . Therefore we would expect that 2.5% of people to have IQ scores less than 80 .

Exercises

1. Scores on a general achievement test are normally distributed with a mean of 80 and a standard deviation of 15. Adam scored 95. What proportion of students had a higher score than Adam?

Answer: 16\%
2. The actual weights of cereal boxes that are supposed to contain 500 g are normally distributed with mean of 510 g and a standard deviation of 5 g . What proportion of boxes are under-filled?

Answer: 2.5\%
3. In a maths class the bottom 16% of students are given an F grade. If the class mean is 63 and the standard deviation is 18 what score must a student get to pass?

Answer: 45
4. If newborn birth weights in a certain hospital are normally distributed with a mean of 3200 g and a standard deviation of 400 g
(a) what percentage of babies weigh more than $3200 g$?
(b) what percentage of babies weigh between 2400 g and 4000 g ?
(c) what percentage of babies weigh less than 3600 g ?
(d) if the 16% of babies with the lowest birth weights are placed in the special care nursery will a baby that weighs $2500 g$ need special care?

Answer: (a) 50% (b) 95% (c) 84% (d) yes
5. 95% of people in a clinical study had systolic blood pressure readings between 116 and 144. If the blood pressure measurements follow a normal distribution what is the mean and standard deviation of the blood pressures for this group.

Answer: $\mu=130, \sigma=7$
6. A class of ten students get the following marks in a test: $13,23,41,55,66,78,49,33,35,67$. If anyone who scored less than one standard deviation below the mean fails how many students will fail?

Answer: 2

