M8: Inverse of a 2×2 Matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

In matrix algebra, we can add, subtract and multiply matrices subject to conditions on the matrix shape (or order). While matrix algebra does not have a division operation, there is multiplication by the inverse matrix. This module discuses the concept of an inverse matrix.

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Definition

Let I denote the identity matrix. That is the matrix containing ones on the main diagonal and zeros elsewhere. That is

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], I_{4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

If A is a square matrix and B is another square matrix of the same order such that

$$
A B=B A=I
$$

then we call B the inverse of A. The inverse of A is denoted by the symbol $A^{-1} .{ }^{1}$ Hence

$$
A A^{-1}=A^{-1} A=I
$$

Not every square matrix has an inverse. If the determinant of a matrix equals zero, the inverse does not exist and the matrix is called singular. If the determinant is unequal to zero the inverse exists and we call the matrix non-singular or invertible.

Inverse of a 2×2 Matrix

If A is a 2×2 matrix, then A^{-1} is also a 2×2 matrix such that:

$$
A A^{-1}=A^{-1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

${ }^{1}$ Note that

$$
A^{-1} \neq \frac{1}{A}
$$

as division is not defined in matrix algebra.

There is a simple formula to find the inverse of a 2×2 matrix.
Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the inverse matrix of A is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Note that $a d-b c$ is the determinant of the matrix A. That is $a d-$ $b c=\operatorname{det} A=|A|$. So we can also write

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $\operatorname{det} A=0$, we have

$$
A^{-1}=\frac{1}{0}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

But $1 / 0$ is undefined and so the inverse does not exist.

Example 1

Find the inverse of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right]$.

Solution:

First check if A is singular.

$$
\begin{aligned}
\operatorname{det} A & =2 \times 4-2 \times 3 \\
& =8-6 \\
& =2
\end{aligned}
$$

so A is not singular and the inverse exists. Using the formula above,

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
4 & -3 \\
-2 & 2
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
4 & -3 \\
-2 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -3 / 2 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Check $A A^{-1}=I$ and $A^{-1} A=I$.

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{ll}
2 & 3 \\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & -3 / 2 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 \times 2+3 \times(-1) & 2 \times(-3 / 2)+3 \times 1 \\
2 \times 2+4 \times(-1) & 2 \times(-3 / 2)+4 \times 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A^{-1} A & =\left[\begin{array}{cc}
2 & -3 / 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
2 & 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \times 2+(-3 / 2) \times 2 & 2 \times 3+(-3 / 2) \times 4 \\
-1 \times 2+1 \times 2 & (-1) \times 3+1 \times 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

So $A^{-1}=\left[\begin{array}{cc}2 & -3 / 2 \\ -1 & 1\end{array}\right]$ is the inverse of A.

Example 2

Find the inverse of the matrix $A=\left[\begin{array}{cc}-1 & -2 \\ 4 & 3\end{array}\right]$.
Solution:
The determinant,

$$
\begin{aligned}
\operatorname{det} A & =-1 \times 3-(-2) \times 4 \\
& =-3-(-8) \\
& =5
\end{aligned}
$$

so the matrix A has an inverse. Using the formula,

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
3 & 2 \\
-4 & -1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
3 & 2 \\
-4 & -1
\end{array}\right]
\end{aligned}
$$

Check $A A^{-1}=I$ and $A^{-1} A=I$.

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{cc}
-1 & -2 \\
4 & 3
\end{array}\right]\left(\frac{1}{5}\left[\begin{array}{cc}
3 & 2 \\
-4 & -1
\end{array}\right]\right) \\
& =\frac{1}{5}\left[\begin{array}{cc}
-1 & -2 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-4 & -1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-3+8 & -2+2 \\
12-12 & 8-3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
A^{-1} A & =\frac{1}{5}\left[\begin{array}{cc}
3 & 2 \\
-4 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
4 & 3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-3+8 & -6+6 \\
4-4 \\
8-3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

So $A^{-1}=\frac{1}{5}\left[\begin{array}{cc}3 & 2 \\ -4 & -1\end{array}\right]$.

Example 3

Find the inverse of the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$.
Solution: The determinant of A is

$$
\begin{aligned}
\operatorname{det} A & =3 \times 4-6 \times 2 \\
& =12-12 \\
& =0
\end{aligned}
$$

Since $\operatorname{det} A=0$,the matrix A does not have an inverse.

Exercise 1

Find if possible, the inverses of the following matrices:
a) $\left[\begin{array}{cc}2 & -1 \\ -4 & 3\end{array}\right]$
b) $\left[\begin{array}{ll}0 & 4 \\ 2 & 5\end{array}\right]$
c) $\left[\begin{array}{cc}-2 & -3 \\ 6 & 9\end{array}\right]$
d) $\left[\begin{array}{cc}-3 & 4 \\ 2 & 1\end{array}\right]$.

Answers Exercise 1.
a) $\left[\begin{array}{cc}3 / 2 & 1 / 2 \\ 2 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}-5 / 8 & 1 / 2 \\ 1 / 4 & 0\end{array}\right]$
c) Inverse does not exist $d) \frac{1}{11}\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]$.

Exercise 2
For

$$
A=\left[\begin{array}{cc}
-1 & -3 \\
2 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 0 \\
4 & 1
\end{array}\right]
$$

find A^{-1} and B^{-1} and show that $(A B)^{-1}=B^{-1} A^{-1}$.

Answers Exercise 2.

$$
A^{-1}=\left[\begin{array}{cc}
5 & 3 \\
-2 & -1
\end{array}\right], \quad B^{-1}=\left[\begin{array}{cc}
-1 / 2 & 0 \\
2 & 1
\end{array}\right]
$$

