• RMIT UNIVERSITY

M7 Types of Solutions

x + 2y - z = -32x - 3y + 2z = 13-x + 5y - 4z = -19

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -3 & 2 \\ -1 & 5 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 13 \\ -19 \end{bmatrix}$$

For any system of equations, there may be:

- 1. Infinitely many solutions
- 2. No solution
- 3. A unique solution

This module discusses these possibilities.

Coefficient Matrix

Consider the following system of equations:

$$2x + 4y - z = 9$$
$$x - y + 2z = -4$$
$$-x + y - z = 3$$

These may be written in the matrix form:

$$\begin{bmatrix} 2 & 4 & -1 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ -4 \\ 3 \end{bmatrix}.$$

The matrix

$$\left[\begin{array}{cccc}
2 & 4 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right]$$

is called the coefficient matrix because it contains the coefficients of the variables x, y and z in the system of equations.

What Does the Coefficient Matrix Tell Us?

The coefficient matrix can be used to find information about the number of solutions to a system of equations. For any system of equations, if the coefficient matrix is:

- 1. Singular (that is the determinant = 0) there will be an infinite number of solutions or no solutions.
- 2. Non-singular (determinant \neq 0) there will be a unique solution.

Infinitely Many Solutions

Example 1

Consider the system of equations

$$x + 2y - z = 3$$
$$x + 3y = 4$$
$$-x - y + 2z = -2$$

The augmented matrix for this system is

$$\left[\begin{array}{ccc|ccc}
1 & 2 & -1 & 3 \\
1 & 3 & 0 & 4 \\
-1 & -1 & 2 & -2
\end{array}\right].$$

Using elementary row operations we get:

$$R'_{2} = R_{2} - R_{1} \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 1 & 1 \\ R'_{3} = R_{3} + R_{1} & 0 & 1 & 1 \end{bmatrix}$$

$$R_3' = R_3 - R_2 \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Row 3 tells us that 0x + 0y + 0z = 0. This is true for any value of x, y or z. So we are able to set any one¹ of these variables to some number $t \in \mathbb{R}$. For this example², we set z = t. From R_2 and substituting t for z we have

$$y + z = 1$$
$$y + t = 1$$
$$y = 1 - t$$

Now from R_1 , substituting z = t, y = 1 - t we have

$$x + 2y - z = 3$$

$$x + 2(1 - t) - t = 3$$

$$x + 2 - 2t - t = 3$$

$$x = 1 + 3t.$$

- ¹ It can only be one variable as there other equations to be satisfied in R_2 and R_1 .
- ² Even though we set z = t, we could set either x = t or y = t. We still get a solution to the system of equations but it will look different.

So the solution is x = 1 + 3t, y = 1 - t and z = t where $t \in \mathbb{R}^3$

In general if the reduced augmented matrix has one or more rows of zeros, there will be an infinite number of solutions to the system of equations.⁴

Example 2

Consider the system of equations

$$x + 2y - z = 3$$
$$2x + 4y - 2z = 6$$
$$-5x - 10y + 5z = -15$$

The augmented matrix for this system is

$$\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
2 & 4 & -2 & 6 \\
-5 & -10 & 5 & -15
\end{array}\right].$$

Using elementary row operations we get

$$R'_2 = R_2 - 2R_1 \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$R'_3 = R_3 + 5R_1 \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We have only one equation and three unknowns. In this case we must let two of the three variables be free. For example, we set z=t, where $t\in\mathbb{R}$ and y=s, where $s\in\mathbb{R}$.5 Substituting into R_1 we get

$$x + 2y - z = 3$$
$$x + 2s - t = 3$$
$$x = 3 - 2s + t.$$

So the solution is x = 3 - 2s + t, y = s, z = t where $s \in \mathbb{R}$ and $t \in \mathbb{R}$.

No Solutions

Consider the system of equations

$$x + 2y - 2z = 3$$
$$2x + y + z = 4$$
$$3y - 5z = -1.$$

The augmented matrix for this system is

$$\left[\begin{array}{ccc|ccc} 1 & 2 & -2 & 3 \\ 2 & 1 & 1 & 4 \\ 0 & 3 & -5 & -1 \end{array}\right].$$

- ³ As there are an infinite number of choices for *t*, there an infinite number of solutions to the system of equations.
- ⁴ You may recall that the determinant of a matrix with a row of zeros is zero. Hence the matrix is singular.

⁵ It doesn't matter which two variables are selected to be a parameter s or t. We could set x = s and y = t. Substituting in row 1 gives:

$$s + 2t - z = 3$$
$$z = s + 2t - 3.$$

While this looks different to the solution at left, it is still a valid solution to the set of equations.

Using elementary row operations we get:

$$R_2' = R_2 - 2R_1 \begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & -3 & 5 & -2 \\ 0 & 3 & -5 & -1 \end{bmatrix}$$

$$R_3' = R_3 + R_2 \begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & -3 & 5 & -1 \\ 0 & 0 & 0 & -3 \end{bmatrix}.$$

In this case, R_3 says that 0x + 0y + 0z = -3. This is not possible because regardless of the choice of x, y and z the LHS must be zero. In this case there are no solutions and we call the system of equations inconsistent.

Unique Solutions

Consider the system of equations

$$2x + 4y - z = 9$$
$$x - y + 2z = -4$$
$$-x + y - z = 3$$

The augmented matrix for this system is

$$\left[\begin{array}{ccc|ccc} 2 & 4 & -1 & 9 \\ 1 & -1 & 2 & -4 \\ -1 & 1 & -1 & 3 \end{array}\right].$$

Using elementary row operations we get

$$R'_{1} = R_{2} \begin{bmatrix} 1 & -1 & 2 & -4 \\ 2 & 4 & -1 & 9 \\ -1 & 1 & -1 & 3 \end{bmatrix}$$

$$R'_2 = R_2 - 2R_1 \begin{bmatrix} 1 & -1 & 2 & -4 \\ 0 & 6 & -5 & 17 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

From row 3 we have z = -1. Substituting this into row 2 we have

$$6y - 5z = 17$$
$$6y + 5 = 17$$
$$6y = 12$$
$$y = 2.$$

Substituting for *z* and *y* in row 1 gives:

$$2x + 4y - z = 9$$
$$2x + 4(2) - (-1) = 9$$
$$2x + 8 + 1 = 9$$
$$2x = 0$$
$$x = 0.$$

So the solution is x = 0, y = 2, z = -1.

Exercises

Find the solutions to the following systems of equations:

1.
$$x + 2y - z = 5$$

 $3x - y + 2z = 1$
 $2x - y - z = -3$
 $2x - y + 3z = 0$
2. $x + 2y - 2z = 7$
 $-x - 2y + 2z = 1$

3.
$$2x - y + 3z = -3$$
 4. $x + 2y - z = 3$
 $x + 2y + z = -4$ $-x + y - 2z = -3$
 $4x + 3y + 5z = -11$ $3x + 3z = 9$

Answers

1.
$$x = 1$$
, $y = 2$, $z = 0$

2. No solution

3. $x = -\frac{7t}{5} - 2$, $y = \frac{t}{5} - 1$, z = t (Your answer may be different if you choose y = t or x = t.)

4. x = 3 - t, y = t, z = t (Your answer may be different if you choose y = t or x = t.)