M6 Systems of Equations

Matrices can be used to solve systems of equations by using elementary row operations and the augmented matrix. This module discusses these topics.

$$
\begin{gathered}
x+2 y-z=-3 \\
2 x-3 y+2 z=13 \\
-x+5 y-4 z=-19
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & -3 & 2 \\
-1 & 5 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 \\
13 \\
-19
\end{array}\right]
$$

The Augmented Matrix
Consider the following system of equations:

$$
\begin{aligned}
x+2 y-z & =-3 \\
2 x-3 y+2 z & =13 \\
-x+5 y-4 z & =-19
\end{aligned}
$$

The corresponding augmented matrix for this system is

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & -3 \\
2 & -3 & 2 & 13 \\
-1 & 5 & -4 & -19
\end{array}\right]
$$

The first row comprises the three coefficients of x, y and $z(1,2,-1)$ and the right hand side (3) from the first equation.

The second row comprises the three coefficients of x, y and $z(2,-3,2)$ and the right hand side (13) from the second equation.

The third row comprises the three coefficients of x, y and $z(-1,4,-4)$ and the right hand side (-19) from the third equation.

The vertical line indicates this is an augmented matrix and should be included. Otherwise it would look like a 3×4 matrix.

Elementary Row Operations

Elementary row operations are operations that can be used to simplify an augmented matrix when solving systems of equations. Allowable elementary row operations are:

1. Interchange any two rows.
2. Multiply a row by any constant.
3. Add or subtract a multiple of one row to another row.

Solving Equations

The method is as follows:

1. Create the augmented matrix
2. Use row operations to reduce the augmented matrix to the following form

$$
\left[\begin{array}{lll|l}
a & b & c & d \\
0 & e & f & g \\
0 & 0 & h & k
\end{array}\right]
$$

Note that the entries below the main diagonal are zero.
3. From row 3 we have $h z=k$ and so $z=k / h$.
4. From row 2 we have $e y+f z=g$. Since z is known (from Step 3), this can be arranged to find y.
5. From row 1 we have $a x+b y+c z=d$. Since x and y are known from steps 3 and 4 we can find x.

Steps 3 to 5 are called back substitution.

Example 1

Solve the following for x, y and z :

$$
\begin{aligned}
x+2 y-z & =-3 \\
2 x-3 y+2 z & =13 \\
-x+5 y-4 z & =-19
\end{aligned}
$$

Solution: The augmented matrix is:

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & -3 \\
2 & -3 & 2 & 13 \\
-1 & 5 & -4 & -19
\end{array}\right]
$$

We now use row operations to get zeroes in row 2 and row 3 of column 1 . We do this by multiplying row $1\left(R_{1}\right)$ by 2 and subtracting it from row $2\left(R_{2}\right)$ to get:

$$
R_{2}^{\prime}=R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 2 & -1 & -3 \\
0 & -7 & 4 & 19 \\
-1 & 5 & -4 & -19
\end{array}\right]
$$

Now to get a zero in row 3 , column 1 we add rows 1 and 3 to get:

$$
R_{3}^{\prime}=R_{3}+R_{1}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & -7 & 4 & 19 \\
0 & 7 & -5 & -22
\end{array}\right]
$$

Next we get a zero in row 3 , column 1 by adding rows 2 and 3 :

$$
R_{3}^{\prime}=R_{3}+R_{2}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & -7 & 4 & 19 \\
0 & 0 & -1 & -3
\end{array}\right]
$$

Now we can start the back substitution. From row 3 we have $-1 z=$ -3 so $z=3$. From row 2 we have $-7 y+4 z=19$. Substituting for z we get

$$
\begin{aligned}
-7 y+4 z & =19 \\
-7 y+4(3) & =19 \\
-7 y & =7 \\
y & =-1
\end{aligned}
$$

From row 1 we have $x+2 y-z=-3$. Substituting for y and z gives

$$
\begin{aligned}
x+2 y-z & =-3 \\
x+2(-1)-3 & =-3 \\
x-5 & =-3 \\
x & =2 .
\end{aligned}
$$

The solution to the simultaneous equations is therefore, $x=2, y=$ $-1, z=3$.

Note that you can check your solution by substituting the values for x, y and z in the original equations. For example the left hand side of equation 1 is

$$
\begin{aligned}
x+2 y-z & =2+2(-1)-3 \\
& =2-2-3 \\
& =-3 \\
& =\text { RHS. }
\end{aligned}
$$

Example 2
Solve the following simultaneous equations for x, y and z

$$
\begin{aligned}
3 x-y+2 z & =3 \\
2 y-5 z & =-1 \\
x+y+z & =4
\end{aligned}
$$

Solution: The augmented matrix is

$$
\left[\begin{array}{ccc|c}
3 & -1 & 2 & 3 \\
0 & 2 & -5 & -1 \\
1 & 1 & 1 & 4
\end{array}\right]
$$

We first interchange rows 1and 3. This puts a one in the top left corner of the matrix and makes the arithmetic easier:

$$
\begin{aligned}
& R_{1}^{\prime}=R_{3} \\
& R_{3}^{\prime}=R_{1}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & 2 & -5 & -1 \\
3 & -1 & 2 & 3
\end{array}\right]
$$

We now want a zero in the first position of row 3 . We subtract $3 R_{1}$ from R_{3} to get:

$$
R_{3}^{\prime}=R_{3}-3 R_{1}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & 2 & -5 & -1 \\
0 & -4 & -1 & -9
\end{array}\right]
$$

Now we want a zero in row 3column 2 . We get this by adding $2 R_{2}$ to R_{3} :

$$
R_{3}^{\prime}=R_{3}+2 R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & 2 & -5 & -1 \\
0 & 0 & -11 & -11
\end{array}\right]
$$

From row $3,-11 z=-11$ so $z=1$. From row 2 and substituting $z=1$ we get

$$
\begin{aligned}
2 y-5 z & =-1 \\
2 y-5(1) & =-1 \\
2 y & =4 \\
y & =2 .
\end{aligned}
$$

From row 3 and substituting for x and y we have

$$
\begin{aligned}
3 x-y+2 z & =3 \\
3 x-2+2(1) & =3 \\
3 x & =3 \\
x & =1 .
\end{aligned}
$$

So the solution is $x=1, y=2$ and $z=1$.

Example 3
Solve the equations:

$$
\begin{aligned}
2 x-2 y+2 z & =-6 \\
3 x+4 y+z & =-2 \\
2 x+6 y+3 z & =2 .
\end{aligned}
$$

Solution: The augmented matrix is

$$
\left[\begin{array}{ccc|c}
2 & -2 & 2 & -6 \\
3 & 4 & 1 & -2 \\
2 & 6 & 3 & 2
\end{array}\right]
$$

The first step is to try and get a 1 in the top left hand corner of the matrix. In example 2 we did that by interchanging rows. In this case, that won't work. However row 1 can be divided by 2 to get

$$
R_{1}^{\prime}=R_{1} / 2\left[\begin{array}{ccc|c}
1 & -1 & 1 & -3 \\
3 & 4 & 1 & -2 \\
2 & 6 & 3 & 2
\end{array}\right] .
$$

Now we proceed in the usual way. In this example we do not put in all the comments.

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}-3 R_{1}\left[\begin{array}{ccc|c}
1 & -1 & 1 & -3 \\
0 & 7 & -2 & 7 \\
2 & 6 & 3 & 2
\end{array}\right] \\
& R_{3}^{\prime}=R_{3}-2 R_{1}\left[\begin{array}{ccc|c}
1 & -1 & 1 & -3 \\
0 & 7 & -2 & 7 \\
0 & 8 & 1 & 8
\end{array}\right] \\
& R_{3}^{\prime}=7 R_{3}-8 R_{2}\left[\begin{array}{ccc|c}
1 & -1 & 1 & -3 \\
0 & 7 & -2 & 7 \\
0 & 0 & 23 & 0
\end{array}\right] .
\end{aligned}
$$

From R_{3} we have $23 z=0$ and so $z=0$. Substituting this into R_{2} gives

$$
\begin{aligned}
7 y-2 z & =7 \\
7 y-2(0) & =7 \\
7 y & =7 \\
y & =1 .
\end{aligned}
$$

Substituting $z=0, y=1$ into R_{1} we get

$$
\begin{aligned}
x-y+z & =-3 \\
x-1+0 & =-3 \\
x & =-2 .
\end{aligned}
$$

The solution is $x=-2, y=1, z=0$.

Infinite Number of Solutions

In all the examples above we had a unique solution. That is, x, y and z were associated with a single number. It is possible that a set of simultaneous equations has an infinite number of solutions. Imagine after using row operations you get an augmented matrix like

$$
\left[\begin{array}{lll|l}
a & b & c & d \\
0 & e & f & g \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

In this case R_{3} tells us nothing. We basically have 2 equations and 3 unknowns. In this case we will have an infinite number of solutions and the variables x, y and z will be in terms of some parameter. The following example illustrates this case.

Example 4

Solve the following set of equations:

$$
\begin{array}{r}
x+y+z=3 \\
2 x-y+z=5 \\
3 x+2 z=8 .
\end{array}
$$

Solution: The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
2 & -1 & 1 & 5 \\
3 & 0 & 2 & 8
\end{array}\right]
$$

Performing row operations we get

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -3 & -1 & -1 \\
3 & 0 & 2 & 8
\end{array}\right] \\
& R_{3}^{\prime}=R_{3}-3 R_{1}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -3 & -1 & -1 \\
0 & -3 & -1 & -1
\end{array}\right] \\
& R_{3}^{\prime}=R_{3}-R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -3 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

We can go no further with elementary row operations and so start back substitution. Row 3 tells us nothing. From row 2 we have

$$
\begin{gathered}
-3 y-z=-1 \\
3 y+z=1
\end{gathered}
$$

This is an equation with two unknowns. In this case we let one of the variables, either y or z be free. That is we let y or z be equal to some parameter $t \in \mathbb{R}$. It doesn't matter which variable you choose to be free, though the answer will look different. We will set $z=t$ then we have

$$
\begin{aligned}
3 y+z & =1 \\
3 y+t & =1 \\
3 y & =1-t \\
y & =\frac{1-t}{3} .
\end{aligned}
$$

From row 1 and substituting $z=t$ and $y=(1-t) / 3$ we have

$$
\begin{aligned}
x+y+z & =3 \\
x+\frac{1-t}{3}+t & =3 \\
3 x+1-t+3 t & =9 \\
3 x & =8-2 t \\
x & =\frac{8-2 t}{3} .
\end{aligned}
$$

So the solution here is

$$
x=\frac{8-2 t}{3}, y=\frac{1-t}{3}, z=t, t \in \mathbb{R}
$$

This gives us an infinite number of solutions because t can be any real number. To check if we correct we can pick any value of t,determine x, y and z and substitute in the original equations. Let $t=0$ then

$$
x=\frac{8}{3}, y=\frac{1}{3}, z=0
$$

Substituting in equation 1 gives

$$
\begin{aligned}
L H S & =x+y+z \\
& =\frac{8}{3}+\frac{1}{3}+0 \\
& =\frac{9}{3} \\
& =3 \\
& =\text { RHS. }
\end{aligned}
$$

You can substitute into the second and third equation to check this solution is correct.

Exercises

Find the solutions to the following systems of equations:

$$
\text { 1. } \begin{aligned}
x-y-2 z & =-6 \\
2 x-3 y+3 z & =1 \\
3 x-y+4 z & =4
\end{aligned}
$$

3. $x_{1}-x_{2}-2 x_{3}=1$
$-3 x_{1}+2 x_{2}+4 x_{3}=-3$
$2 x_{1}+x_{2}+x_{3}=1$
4. $2 x+y+2 z=4$
$2 x+4 y-2 z=6$
$-y+3 z=1$
5. $x-2 y+z-w=0$
$2 x+4 y-3 z=0$
$3 x+2 y+2 z-w=0$

Answers

1. $x=-1, y=1, z=2$
2. $x=0, y=2, z=1$
3. $x_{1}=1, x_{2}=-2, x_{3}=1$
4. $x=\frac{1}{2} t, y=-\frac{1}{4} t, z=0, w=t$
