M5. Special Matrices

It is helpful to understand the definition of a number of different types of "special" matrices.

Transpose of a matrix

The transpose of a matrix \mathbf{A} is denoted \mathbf{A}^{T} and is found by interchanging the rows and the columns.

The first row becomes the first column, the second row becomes the second column etc.

If \mathbf{A} is an $m \times n$ matrix, then \mathbf{A}^{T} is an $n \times m$ matrix.

Examples

1. If

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

then by interchanging the rows and columns we get

$$
\mathbf{A}^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

In this case \mathbf{A} is a 3×2 matrix and its transpose \mathbf{A}^{T} is a 2×3 matrix.
2. If

$$
\mathbf{B}=\left[\begin{array}{ll}
1 & 2 \\
7 & 5
\end{array}\right]
$$

then

$$
\mathbf{B}^{T}=\left[\begin{array}{ll}
1 & 7 \\
2 & 5
\end{array}\right]
$$

3. If

$$
\mathbf{C}=\left[\begin{array}{ll}
5 & 2 \\
2 & 4
\end{array}\right]
$$

then

$$
\mathbf{C}^{T}=\left[\begin{array}{ll}
5 & 2 \\
2 & 4
\end{array}\right]
$$

Note that in this case $\mathbf{C}=\mathbf{C}^{T}$ and \mathbf{C} is called a symmetric matrix.

Symmetric Matrix

A symmetric matrix is a square matrix which is equal to its transpose. It is also symmetric about its leading diagonal (top left to bottom right).

Examples

1. The matrix

$$
\mathbf{D}=\left[\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right]
$$

is symmetric because

$$
\begin{aligned}
\mathbf{D}^{T} & =\left[\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right] \\
& =\mathbf{D} .
\end{aligned}
$$

2. The matrix

$$
\mathbf{E}=\left[\begin{array}{ccc}
3 & 4 & 5 \\
4 & -2 & -3 \\
5 & -3 & 1
\end{array}\right]
$$

is symmetric because

$$
\begin{aligned}
\mathbf{E}^{T} & =\left[\begin{array}{ccc}
3 & 4 & 5 \\
4 & -2 & -3 \\
5 & -3 & 1
\end{array}\right] \\
& =\mathbf{E} .
\end{aligned}
$$

3. The matrix

$$
\mathbf{F}=\left[\begin{array}{ccc}
1 & -2 & 4 \\
-2 & 3 & -4 \\
4 & -4 & 2
\end{array}\right]
$$

is symmetric because

$$
\begin{aligned}
\mathbf{F}^{T} & =\left[\begin{array}{ccc}
1 & -2 & 4 \\
-2 & 3 & -4 \\
4 & -4 & 2
\end{array}\right] \\
& =\mathbf{F}
\end{aligned}
$$

Orthogonal Matrix

A square matrix is orthogonal if $\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I}$ where \mathbf{I} is the unit matrix (also called the identity matrix).

Because $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$ it follows that for an orthogonal matrix $\mathbf{A}^{T}=\mathbf{A}^{-1}$. This can be useful for finding the inverse of an orthogonal matrix as it is usually easier to find the transpose than the inverse of a matrix.

Note that the determinant of an orthhogonal matrix is either equal to +1 (a rotation matrix) or -1 (a reflection matrix).

The rows of an orthogonal matrix are mutually orthogonal (perpendicular) unit vectors. The columns of an orthogonal matrix are also mutually orthogonal unit vectors.

Examples

The rotation matrix $\mathbf{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix that rotates points, lines and regions through an angle of θ° anticlockwise. ${ }^{1}$

The determinant, $\operatorname{det}|\mathbf{A}|=\left|\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1$.
${ }^{1}$ Note that in the following sections, we use the trigonometric identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$ octions, we

$$
\begin{aligned}
& \mathbf{A}^{T}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{A A}^{T} & =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & -\cos \theta \sin \theta+\sin \theta \cos \theta \\
-\sin \theta \cos \theta+\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

That is to say $\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I}$. Hence

$$
\begin{aligned}
\mathbf{A}^{-1} & =\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\frac{1}{1}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& =\mathbf{A}^{T}
\end{aligned}
$$

The reflection matrix $\mathbf{B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is an orthogonal matrix that reflects points, lines and regions in the x-axis.
$|\mathbf{B}|=-1$ and $\mathbf{B}^{T}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\mathbf{B}^{T} \mathbf{B}=\mathbf{B B}^{T}=\mathbf{I}$ and $\mathbf{B}^{T}=\mathbf{B}^{-1}$
Note that in this case \mathbf{B} is both orthogonal and symmetric.

Exercise 1

Given
$\mathbf{A}=\left[\begin{array}{ll}3 & -2\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}1 & -3 \\ -3 & 0\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ccc}2 & 0 & 5 \\ 0 & -2 & 2 \\ 5 & 2 & 1\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{ccc}2 & -1 & 5 \\ 5 & -1 & 2\end{array}\right] \quad \mathbf{E}=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$,
(a) Write down the transpose of each of the matrices.
(b) Which of the given matrices are symmetric?

Answers
a. $\mathbf{A}^{T}=\left[\begin{array}{c}3 \\ -2\end{array}\right] \quad \mathbf{B}^{T}=\left[\begin{array}{cc}1 & -3 \\ -3 & 0\end{array}\right] \quad \mathbf{C}^{T}=\left[\begin{array}{ccc}2 & 0 & 5 \\ 0 & -2 & 2 \\ 5 & 2 & 1\end{array}\right] \quad \mathbf{D}^{T}=\left[\begin{array}{cc}2 & 5 \\ -1 & -1 \\ 5 & 2\end{array}\right] \quad \mathbf{E}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]$
b. \mathbf{B} and \mathbf{C} are symmetric.

Exercise 2

Given
$\mathbf{L}=\left[\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{ccc}\frac{3}{5} & -\frac{4}{5} & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1\end{array}\right] \quad \mathbf{N}=\frac{1}{3}\left[\begin{array}{ccc}2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$,
(a) Which of the given matrices are orthogonal? If the matrix is orthogonal, write down its inverse.
(b) Which of the given matices is a rotation matrix?

Answers
(a) \mathbf{M}, \mathbf{N} and \mathbf{Q} are orthogonal

$$
\mathbf{M}^{-1}=\left[\begin{array}{ccc}
\frac{3}{5} & \frac{4}{5} & 0 \\
-\frac{4}{5} & \frac{3}{5} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{N}^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{array}\right] \quad \mathbf{Q}^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

(b) \mathbf{M} is a rotation matrix. $|\mathbf{M}|=1$.

