## LT5 LAPLACE TRANSFORMS - ELECTRICAL CIRCUITS

## Applying Laplace Transforms to Electrical Circuits

## Example

For the LRC circuit given by

$$
\mathrm{L} \frac{d i}{d t}+R i+\frac{1}{c} \int i d t=E_{0} \quad \text { where } \frac{d q}{d t}(0)=\mathrm{q}(0)=0
$$

And $\mathrm{L}=1, \mathrm{R}=3, \mathrm{C}=0.5, E_{0}=10$
Find:
(a) the charge $q(t)$ on the capacitor
(b) the resulting current $i(t)$ in the circuit, using Laplace transforms

## Solution

$$
\mathrm{L} \frac{d i}{d t}+R i+\frac{1}{c} \int i d t=E_{0}
$$

Since $i=\frac{d q}{d t} \quad$ we can write this equation as

$$
\mathrm{L} \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E_{0}
$$

Since $\mathrm{L}=1, \mathrm{R}=3, \mathrm{C}=0.5, E_{0}=10$ this equation becomes

$$
\frac{d^{2} q}{d t^{2}}+3 \frac{d q}{d t}+2 q=10
$$

Recall that
$\mathcal{L}\left[\frac{d^{2}}{d t^{2}} q(t)\right]=s^{2} Q(s)-s . q(0)-q^{\prime}(0)$
$\mathcal{L}\left[\frac{d}{d t} q(t)\right]=s Q(s)-q(0)$
$\mathcal{L}[q(t)]=Q(s)$
$\mathcal{L}[a]=\frac{a}{s}$
So if $\quad \frac{d^{2} q}{d t^{2}}+3 \frac{d q}{d t}+2 q=10$
Then

$$
\mathcal{L}\left[\frac{d^{2} q}{d t^{2}}+3 \frac{d q}{d t}+2 q\right]=\mathcal{L}[10]
$$

And

$$
\left[s^{2} Q(s)-s . q(0)-q^{\prime}(0)\right]+3[s Q(s)-q(0)]+[2 Q(s)]=\frac{10}{s}
$$

Therefore $s^{2} Q(s)+3 s Q(s)+2 Q(s)=\frac{10}{s}$
And since we are given that $q(0)=0$ and $q^{\prime}(0)=0$

$$
\Rightarrow \quad Q(s)\left[s^{2}+3 s+2\right]=\frac{10}{s}
$$

$\Rightarrow \quad Q(s)=\frac{10}{s\left[s^{2}+3 s+2\right]}$

$$
Q(s)=\frac{10}{s(s+1)(s+2)}
$$

We can now resolve this into partial fractions
Let $\frac{10}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}$
$\Rightarrow \quad 10=\mathrm{A}(\mathrm{s}+1)(\mathrm{s}+2)+\mathrm{B}(\mathrm{s})(\mathrm{s}+2)+\mathrm{C}(\mathrm{s})(\mathrm{s}+1)$
Setting $s=0: \quad 10=2 \mathrm{~A} \quad \Rightarrow \mathrm{~A}=5$
Setting $s=-1: 10=-B \quad \Rightarrow B=-10$
Setting $s=-2: 10=2 C \quad \Rightarrow C=5$

So $\quad Q(s)=\frac{10}{s(s+1)(s+2)}$
Can now be written as: $Q(s)=\frac{5}{s}-\frac{10}{s+1}+\frac{5}{s+2}$
Now taking the inverse Laplace transform:

$$
\begin{aligned}
& q(t)=\mathcal{L}-1\left[\frac{5}{s}-\frac{10}{s+1}+\frac{5}{s+2}\right] \\
& q(t)=5-10 e^{-t}+5 e^{-2 t}
\end{aligned}
$$

To find the current $i(t)$ :
$i(t)=\frac{d q}{d t}=\frac{d}{d t}\left(5-10 e^{-t}+5 e^{-2 t}\right)=10 e^{-t}-10 e^{-2 t}$

Note: This problem could also have been solved using a $2^{\text {nd }}$ order differential equation, without Laplace transforms had the question not specifically asked for its solution using Laplace transforms.

