STUDY TIPS

WORKED SOLUTIONS

LT4 CONVOLUTION THEOREM AND GREEN'S FUNCTION

Question
Given the initial value problem $\ddot{x}+4 x=f(t)$ with $x(0)=\dot{x}(0)=0$ find:
a. The Green's function of the system and the transfer function.
b. The rest solution, as an integral, when the forcing term $f(t)=\cos 3 t$

Worked solution.
a. Green's function and transfer function.

For Green's function replace $f(t)$ with $\delta(t)$ and solve
$\ddot{x}+4 x=\delta(t)$ with $x(0)=\dot{x}(0)=0$

Take the Laplace transform of both sides
$L(\ddot{x}+4 x)=L[\delta(t)]$
$s^{2} X(s)+s x(0)-\dot{x}(0)+4 X(s)=1$
but $x(0)=0, \dot{x}(0)=0$
$\therefore s^{2} X(s)+4 X(s)=1$
$X(s)\left(s^{2}+4\right)=1$
$X(s)=\frac{1}{s^{2}+4}$
Green's function $g(t)=L^{-1}\left(\frac{1}{s^{2}+4}\right)$

$$
g(t)=\frac{1}{2} \sin (2 t)
$$

The transfer function $G(s)$ is the Laplace transform of the Green's function.

$$
\begin{equation*}
G(s)=\frac{1}{s^{2}+4} \tag{3}
\end{equation*}
$$

b. The rest solution, as an integral, when the forcing term $f(t)=\cos 3 t$
$\ddot{x}+4 x=f(t)$ with $x(0)=\dot{x}(0)=0$

Take the Laplace transform of both sides.

$L(\ddot{x}+4 x)=L[f(t)]$

From (1) $L(\ddot{x}+4 x)=\left(s^{2}+4\right) X(s)$ therefore
$X(s)\left(s^{2}+4\right)=L[f(t)]=F(s)$
$X(s)=F(s) \frac{1}{s^{2}+4}$

But from (3) $\frac{1}{s^{2}+4}=G(s)$ therefore

$$
X(s)=F(s) G(s) \quad \text { and }
$$

$$
x(t)=L^{-1}[F(s) G(s)]
$$

The convolution theorem states:

$$
L^{-1}[F(s) G(s)]=\left(f^{*} g\right)(t) \text { therefore }
$$

$$
x(t)=(f * g)(t)=\int_{u=0}^{t} f(t-u) g(u) d u \quad \text { (from the definition of convolution.) }
$$

$$
g(t)=\frac{1}{2} \sin (2 t) \quad(\text { from }(2)) \text { and } \quad f(t)=\cos (3 t) \quad \text { therefore }
$$

The rest solution, as an integral, is:

$$
x(t)=(f * g)(t)=\int_{u=0}^{t} \frac{1}{2} \cos (3(t-u)) \sin (2 u) d u
$$

