FG8 Quadratic Graphs

A quadratic graph is the graph of a quadratic function. This module describes the graphing of quadratic functions. A quadratic function has the form $y = ax^2 + bx + c$ where $a \neq 0$.

The graph of a quadratic function is called a parabola.

To sketch a parabola, find and label:

(a) the *y*-intercept (put x = 0)

(b) the *x*-intercepts (put y = 0)

(c) the vertex (turning point)

The co-ordinates of the vertex are given by:

x co-ordinate $\left(-\frac{b}{2a}\right)$

y co-ordinate: substitute the value of the *x* co-ordinate in the equation for *y*.

A parabola is symmetrical about a vertical line through the vertex.

If a > 0, then the parabola opens upwards (and has a minimum turning point).

If a < 0, then the parabola opens downwards (and has a maximum

turning point).

A quadratic function may also be written in turning point form: $y = a(x - h)^2 + k$, where (h, k) is the turning point.

Examples

 $y = (x-3)^2 + 4$ has a turning point at (3,4) $y = (x+5)^2 + 2$ has a turning point at (-5,2) $y = 2(x+1)^2$ can be written as $y = 2(x+1)^2 + 0$ and has a turning point at (-1,0) $y = x^2 - 7$ can be written as $y = (x-0)^2 - 7$ and has a turning point at (0,-7) $y = 6 - (x-2)^2$ can be written as $y = -(x-2)^2 + 6$ and has a turning point at (2,6)

See Exercise 1

Sketching a Parabola

To sketch a parabola, find and label:

- (a) the *y*-intercept (put x = 0)
- (b) the *x*-intercepts (put y = 0)
- (c) the vertex (turning point)

Examples

1. Sketch $y = x^2$ Intercepts x = 0, y = 0Turning point (0,0)

2. Sketch $y = (x - 1)^2 - 2$ *y*-intercept: x = 0, y = -1 *x*-intercepts: y = 0, $x = \pm \sqrt{2} + 1$ Turning point: (1, -2)

3. Sketch $y = x^2 + 3$ *y*-intercept: x = 0, y = 3 *x*-intercepts: y = 0, $0 = x^2 + 3 \Rightarrow x^2 = -3$ no solution, no *x*-intercepts Turning point: (0,3)

4. Sketch $y = 4 - 2(x + 3)^2$ *y*-intercept: x = 0, y = -14 *x*-intercepts: y = 0, $0 = 4 - 2(x + 3)^2$ $\Rightarrow (x + 3)^2 = 2$ $\Rightarrow x + 3 = \pm\sqrt{2}$ $\Rightarrow x = -3 \pm \sqrt{2}$ Turning point: (-3,4)

See Exercise 2

5. Sketch the graph $y = x^2 + 2x - 8$ *y*-intercept: x = 0, y = -8 *x*-intercepts: y = 0, $0 = x^2 + 2x - 8$ $\Rightarrow 0 = (x+4)(x-2)$ $\Rightarrow x = -4 \text{ or } x = 2$

Turning point: This equation is not in turning point form so we use the equation for the *x*-coordinate of the turning point: x =

$$\left(-\frac{b}{2a}\right)$$

In this example a = 1, b = 2

therefore, the *x*-coordinate of the turning point is $\left(-\frac{2}{2 \times 1}\right) = -1$ Since $y = x^2 + 2x - 8$ the *y*-coordinate of the turning point is $y = (-1)^2 + 2(-1) - 8 = -9$ T.P. = (-1, -9)

Exercise 1

State the turning point of the graphs of the following functions.

(a) $y = (x - 1)^2 + 5$ (b) $y = 5(x - 4)^2 - 12$ (c) $y = (x + 2)^2 + 3$ (d) $y = -3(x + 5)^2 - 3$ (e) $y = (x - 6)^2$ (f) $y = -4x^2 + 3$

Answers Exercise 1

(a)
$$(1,5)$$
 (b) $(4,12)$ (c) $(2,3)$ (d) $(5,3)$ (e) $(6,0)$ (f) $(0,3)$

Exercise 2

Sketch graphs of the following.

(a) $y = x^2 - 7$ (b) $y = (x - 2)^2 + 1$ (c) $y = 4 - (x + 3)^2$ (d) $y = (x - 2)^2$ (e) $y = -(x - 1)^2 - 1$

(c)

Sketch the graphs of the following functions: (a) $y = x^2 - x - 6$ (b) $y = -x^2 - 2x + 8$

(c)
$$y = x^2 - 4x$$

(d) $y = -2x^2 - 6x$
(e) $y = x^2 - 9$

Answers Exercise 3

(a)

