FG8 Quadratic Graphs

A quadratic graph is the graph of a quadratic function. This module describes the graphing of quadratic functions. A quadratic function has the form $y=a x^{2}+b x+c$ where $a \neq 0$.

The graph of a quadratic function is called a parabola.
To sketch a parabola, find and label:
(a) the y-intercept (put $x=0$)
(b) the x-intercepts (put $y=0$)
(c) the vertex (turning point)

The co-ordinates of the vertex are given by:
x co-ordinate $\left(-\frac{b}{2 a}\right)$
y co-ordinate: substitute the value of the x co-ordinate in the equation for y.

A parabola is symmetrical about a vertical line through the vertex.
If $a>0$, then the parabola opens upwards (and has a minimum turning point).

If $a<0$, then the parabola opens downwards (and has a maximum
turning point).

A quadratic function may also be written in turning point form: $y=a(x-h)^{2}+k$, where (h, k) is the turning point.

Examples

$y=(x-3)^{2}+4$ has a turning point at $(3,4)$
$y=(x+5)^{2}+2$ has a turning point at $(-5,2)$
$y=2(x+1)^{2}$ can be written as $y=2(x+1)^{2}+0$ and has a turning point at $(-1,0)$
$y=x^{2}-7$ can be written as $y=(x-0)^{2}-7$ and has a turning point at $(0,-7)$
$y=6-(x-2)^{2}$ can be written as $y=-(x-2)^{2}+6$ and has a turning point at $(2,6)$

See Exercise 1

Sketching a Parabola

To sketch a parabola, find and label:
(a) the y-intercept (put $x=0$)
(b) the x-intercepts (put $y=0$)
(c) the vertex (turning point)

Examples

1. Sketch $y=x^{2}$

Intercepts $x=0, y=0$
Turning point $(0,0)$

2. Sketch $y=(x-1)^{2}-2$
y-intercept: $x=0, y=-1$
x-intercepts: $y=0, x= \pm \sqrt{2}+1$
Turning point: $(1,-2)$

3. Sketch $y=x^{2}+3$
y-intercept: $x=0, y=3$
x-intercepts: $y=0,0=x^{2}+3 \Rightarrow x^{2}=-3$ no solution, no x-intercepts

Turning point: $(0,3)$

4. Sketch $y=4-2(x+3)^{2}$
y-intercept: $x=0, y=-14$
x-intercepts: $y=0$,
$0=4-2(x+3)^{2}$
$\Rightarrow(x+3)^{2}=2$
$\Rightarrow x+3= \pm \sqrt{2}$
$\Rightarrow x=-3 \pm \sqrt{2}$
Turning point: $(-3,4)$

$$
y=4-2(x+3)^{2}
$$

See Exercise 2

5. Sketch the graph $y=x^{2}+2 x-8$
y-intercept: $x=0, y=-8$
x-intercepts: $y=0$,
$0=x^{2}+2 x-8$

$$
\begin{aligned}
& \Rightarrow 0=(x+4)(x-2) \\
& \Rightarrow x=-4 \text { or } x=2
\end{aligned}
$$

Turning point: This equation is not in turning point form so we use the equation for the x-coordinate of the turning point: $x=$ $\left(-\frac{b}{2 a}\right)$

In this example $a=1, b=2$
therefore, the x-coordinate of the turning point is $\left(-\frac{2}{2 \times 1}\right)=-1$
Since $y=x^{2}+2 x-8$ the y-coordinate of the turning point is $y=(-1)^{2}+2(-1)-8=-9$
T.P. $=(-1,-9)$

See Exercise 3

Exercise 1

State the turning point of the graphs of the following functions.
(a) $y=(x-1)^{2}+5$
(b) $y=5(x-4)^{2}-12$
(c) $y=(x+2)^{2}+3$
(d) $y=-3(x+5)^{2}-3$
(e) $y=(x-6)^{2}$
(f) $y=-4 x^{2}+3$

Answers Exercise 1
(a) $(1,5)$
(b) $(4,12)$
(c) $(2,3)$
(d) $(5,3)$
(e) $(6,0)$
(f) $(0,3)$

Exercise 2

Sketch graphs of the following.
(a) $y=x^{2}-7$
(b) $y=(x-2)^{2}+1$
(c) $y=4-(x+3)^{2}$
(d) $y=(x-2)^{2}$
(e) $y=-(x-1)^{2}-1$

Answers Exercise 2
(a)

(b)

(c)

(e)

Exercise 3

Sketch the graphs of the following functions:
(a) $y=x^{2}-x-6$
(b) $y=-x^{2}-2 x+8$
(c) $y=x^{2}-4 x$
(d) $y=-2 x^{2}-6 x$
(e) $y=x^{2}-9$

Answers Exercise 3

(a)

(b)

(c)

(d)

(e)

