

FG3 Inverse Functions

Definition of an Inverse Function

If $f^{-1}(x)$ is the inverse function of a one-to-one function f(x) then $f^{-1}(x)$ is the set of all ordered pairs obtained by interchanging the first and second elements in each ordered pair.

So if $(a,b) \in f$ then $(b,a) \in f^{-1}$ and if $\overline{f}(a) = b$ then $f^{-1}(b) = a$

The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1}

For example the function $f : R \to R$, defined by $y = f(x) = \frac{x-1}{2}$ has an inverse function with the rule y = 2x + 1.

So (3,1) belongs to f and (1,3) belongs to f^{-1} and (-7, -4) belongs to f and (-4, -7) belongs to f^{-1} .

Graph of an Inverse Function

The graphs of any one-to-one function, f , and its inverse, f^{-1} , are symmetric about the line y = x .

Finding an Inverse Function for
$$y = f(x)$$

To obtain the rule for an inverse function, swap the *x* and *y* coordinates in *f* and rearrange to express *y* in terms of *x*.

Example

Find the inverse function of *f* where f(x) = 2 - 3x

$$y = 2 - 3x$$

$$x = 2 - 3y \quad (swap the x and y)$$

$$x - 2 = -3y \quad (rearrange to make y the subject)$$

$$-x + 2 = 3y$$

$$\frac{-x + 2}{3} = y$$

$$f^{-1}(x) = \frac{-x + 2}{3}$$

Exercise

Find the inverse of each of the following one-to-one functions:

1) y = x + 52) y = 4x3) $y = \frac{2x+1}{3}$ 4) $y = \sqrt{2x-1}$, $x \ge \frac{1}{2}$ Answers

1)
$$f^{-1}(x) = x - 5$$

2) $f^{-1}(x) = \frac{x}{4}$
3) $f^{-1}(x) = \frac{3x-1}{2}$
4) $f^{-1}(x) = \frac{x^2+1}{2}$, $x \ge 0$