FG3 Inverse Functions

Definition of an Inverse Function

If $f^{-1}(x)$ is the inverse funtion of a one-to-one function $f(x)$ then $f^{-1}(x)$ is the set of all ordered pairs obtained by interchanging the first and second elements in each ordered pair.

So if $(a, b) \in f$ then $(b, a) \in f^{-1}$ and if $f(a)=b$ then $f^{-1}(b)=a$
The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1}

For example the function $f: R \rightarrow R$, defined by $y=f(x)=\frac{x-1}{2}$ has an inverse function with the rule $y=2 x+1$.

So $(3,1)$ belongs to f and $(1,3)$ belongs to f^{-1} and $(-7,-4)$ belongs to f and $(-4,-7)$ belongs to f^{-1}.

Graph of an Inverse Function

The graphs of any one-to-one function, f, and its inverse, f^{-1}, are symmetric about the line $y=x$.

Finding an Inverse Function for $y=f(x)$
To obtain the rule for an inverse function, swap the x and y coordinates in f and rearrange to express y in terms of x.

Example

Find the inverse function of f where $f(x)=2-3 x$

$$
\begin{aligned}
y & =2-3 x \\
x & =2-3 y \quad \text { (swap the } x \text { and } y) \\
x-2 & =-3 y \quad \text { (rearrange to make } y \text { the subject) } \\
-x+2 & =3 y \\
\frac{-x+2}{3} & =y \\
f^{-1}(x) & =\frac{-x+2}{3}
\end{aligned}
$$

Exercise

Find the inverse of each of the following one-to-one functions:

1) $y=x+5$
2) $y=4 x$
3) $y=\frac{2 x+1}{3}$
4) $y=\sqrt{2 x-1}, x \geq \frac{1}{2}$

Answers

1) $f^{-1}(x)=x-5$
2) $f^{-1}(x)=\frac{x}{4}$
3) $f^{-1}(x)=\frac{3 x-1}{2}$
4) $f^{-1}(x)=\frac{x^{2}+1}{2}, x \geq 0$
