## FG1 Functions and Relations

## Relations

A relation is a set of ordered pairs. For example (1,2), $(2,6),(3,4),(x, y)$ are ordered pairs and $\{(1,2),(2,6),(3,4),(x, y)\}$ is a relation.

The domain of a relation is the set of first elements or the $x$-values of the ordered pairs.

For the above ordered pairs the domain, dom $=\{1,2,3, x\}$.
The range of a relation is the set of second elements or the $y$ values of the ordered pairs. For the above ordered pairs the range, $\operatorname{ran}=\{2,4,6, y\}$.

There is often a rule that links the domain and range.
For example: ${ }^{1}$

$$
S=\{(x, y): y>x, x \in \mathbb{R}\}
$$

This relation, called S, consists of the set of all ordered pairs ( $x$ and $y$ ), where the $y$ value is greater than the $x$ value and where $x$ must be a real number.

Note that a relation is defined by its rule (in this case $y>x$ ) and its domain (in this case $x \in \mathbb{R}$ ). ${ }^{2}$
${ }^{1}$ The symbol $\in$ means "is in" or "is an
element of", the symbol $\mathbb{R}$ stands for
the set of real numbers. The expression

$$
x \in \mathbb{R}
$$

means that " x is an element of the set of real numbers". That is, $x$ is a real number.
${ }^{2}$ If the domain is not given then we assume the largest possible domain.

## Example 1

Sketch the graph of the following relation and state the domain and range:

$$
\left\{(x, y): y=x^{2}\right\}
$$



In this example the rule joining the set of ordered pairs $(x, y)$ is $y=x^{2}$.
$x$ can be any real number. Domain is $\mathbb{R}$.
$y$ must be greater than or equal to zero. Range is $\{y: y \geq 0\}$

## Example 2

Sketch the graph of $x^{2}+y^{2}=4$. State the Domain and Range of this relation.

In this example the rule joining the set of ordered pairs $(x, y)$ is $x^{2}+y^{2}=4$.


From the graph it can be seen that the domain is $\{x:-2 \leq x \leq 2\}$ and the range is $\{y:-2 \leq y \leq 2\}$.

## Example 3

Sketch the graph of $\{(x, y): 2 x+3 y=6, x \geq 0\}$ and state the domain and range of this relation.
In this example the rule joining the set of ordered pairs $(x, y)$ is $2 x+$ $3 y=6$.
The restriction $x \geq 0$ is placed on the domain.


The domain is $\{x: x \geq 0\}$ as is specified in the statement of the relation.

The range is $\{y: y \leq 2\}$ as can be seen from the graph.
The rule of a relation may be thought of as: DOMAIN $\rightarrow$ RULE $\rightarrow$ RANGE.
Values taken from the domain produce values for the range, after passing through the rule that defines the relation. ${ }^{3}$

## Functions

From some of the previous examples it can be seen that some values in the domain ( $x$ values) may have many, even an infinite number of corresponding values in the range ( $y$ values).

A function is a special type of relation. Each point in the domain of a function has a unique value in the range. Every value of $x$ may have only one value of $y$.

## Examples

1. The relation $\{(-1,2),(-1,4),(1,6),(2,8),(3,10)\}$ is not a function because the value $x=-1$ has two corresponding $y$ values ( 2 and 4).
2. The relation $\{(-1,1),(0,2),(1,3),(2,5),(3,7)\}$ is a function because for each $x$ value there is only one corresponding $y$ value.
3. $F=\{(x, y): y=\sin x, x \in R\}$


If we choose any possible value of $x$, there exists only one corresponding value of $y$. Therefore, the relation $F$ is a function.

Another way of writing this function is with mapping notation.

$$
f: X \rightarrow Y, \text { where } f(x)=\sin x
$$

(The domain, $X$, is mapped onto the range, $Y$, using the rule $f(x)=\sin x)$

If only the rule is given then we assume that the domain is $\mathbb{R}$.

## Vertical Line Test

When relations are represented graphically, a vertical line test may be applied to decide if they are functions.

If a vertical line crosses the graph more than once, then it is not a function, as an $x$ value has more than one $y$ value.


The graph on the left is not a function (the vertical line crosses the graph more than once), the graph on the right is a function (vertical line only crosses the graph once). 4

## Implied Domain

If only the rule of the function is given, then we assume that the domain is $\mathbb{R}$ (the set of real numbers) unless otherwise defined implicitly by the function.

## Examples

1. If a function involves a square root, the domain, in the real number system, is restricted to those values of $x$ that result in a nonnegative number under the square root sign.
So, the domain of the function $y=+\sqrt{x-4}$ is restricted such that $x-4 \geq 0$; the domain is $\{x: x \geq 4\}$.
2. The domain of the function $y=+\sqrt{9-x^{2}}$ is restricted such that $9-x^{2} \geq 0$; the domain is $\{x:-3 \leq x \leq 3\}$.
3. If the function involves a fraction, the value in the denominator must not equal zero.
So, the domain of the function $y=\frac{3}{x+5}$ is restricted such that $x+5 \neq 0$; the domain is $\{x: x \neq-5\} .5$
4. The domain of the function $y=\frac{3}{2 x-8}$ is restricted such that $2 x-8 \neq 0$; the domain is $\{x: x \neq 4\}$ or $\{x: x \in \mathbb{R} \backslash\{4\}\} .{ }^{6}$
${ }^{4}$ See Exercise 2
${ }^{5}$ The domain may be written as

$$
\{x: x \in \mathbb{R} \backslash\{-5\}\}
$$

Here $\mathbb{R} \backslash\{-5\}$ is the set of real numbers excluding -5 .
${ }^{6}$ See Exercise 3

## Exercises

## Exercise 1.

State the domain and range of the following relations
(a) $\{(-2,1),(0,2),(2,5),(2,7),(3,9)\}$
(b) $\{(4,1),(5,2),(6,3)\}$
(c) $\left\{(x, y): x^{2}+y^{2}=25\right\}$
(d) $\{(x, y): 2 y=6-5 x, x \geq 2\}$

## Exercise 2.

Which of the following relations are functions?
(a) $\{(x, y): y=2 x+4\}$
(b) $\left\{(x, y): y=4-x^{2}\right\}$
(c) $\left\{(x, y): x^{2}+y^{2}=36\right\}$
(d) $\{(x, y): y=7\}$
(e) $\{(x, y): x=-2\}$
(f) $\left\{(x, y): y=-\sqrt{4-x^{2}}\right\}$

## Exercise 3.

State the domain of the following functions.
(a) $\{(x, y): y=x+2\}$
(b) $\left\{(x, y): y=4-x^{2}\right\}$
(c) $\{(x, y): y=+\sqrt{4-x}\}$
(d) $\left\{(x, y): y=\frac{3}{x+2}\right\}$
(e) $\left\{(x, y): y=\frac{5}{\sqrt{x-7}}\right\}$
(f) $\left\{(x, y): y=\frac{1}{x+2}-\frac{3}{x-4}\right\}$

## Answers

Exercise 1.
(a) domain $=\{-2,0,2,3\} \quad$ range $=\{1,2,5,7,9\}$
(b) domain $=\{4,5,6\} \quad$ range $=\{1,2,3\}$
(c) domain $=\{x:-5 \leq x \leq 5\} \quad$ range $=\{y:-5 \leq y \leq 5\}$
(d) domain $=\{x: x \geq 2\} \quad$ range $=\{y: y \leq-2\}$

Exercise 2.
(a), (b), (d), (f)

Exercise 3.
State the domain of the following functions.
(a) $\mathbb{R}$
(b) $\mathbb{R}$
(c) $\{x: x \leq 4\}$
(d) $\{x: x \neq-2\}$
(e) $\{x: x>7\}$
(f) $\{x: x \in \mathbb{R} \backslash\{-4\}\}$

