

# FG10: Graphs of Sine and Cosine Functions

The functions  $y = \sin x$  and  $y = \cos x$  have a domain of  $\mathbb{R}$  and a range of [-1, 1].

The graphs of these functions are periodic graphs, that is, the shape of the graph repeats every set period.

The graphs of both functions have an amplitude of 1 and a period of  $2\pi$  radians (that is the graph repeats every  $2\pi$  units). They are shown below.







When looking at the graphs remember  $\pi \approx 3.142$ , so  $2\pi \approx 6.284$ . In this module we look at how the basic graphs may be transformed into graphs of more complex trigonometric functions.

#### Change of Amplitude and Period

The graphs of both  $y = a \sin nx$  and  $y = a \cos nx$  have an amplitude |a| and a period of  $\frac{2\pi}{n}$ .

#### Examples

1. Graph  $y = 3 \sin x$ .



In this case, a = 3 and n = 1, therefore the graph has an amplitude of 3 and period of  $2\pi$ .

2. Graph  $y = 3 \cos 2x$ .



In this case, a = 3 and n = 2, therefore the graph has an amplitude of 3 and period of  $\frac{2\pi}{2} = \pi$ .

#### Vertical translation

The graph of  $y = a \sin nx + k$  is the graph of  $y = a \sin nx$  translated up *k* units (or down *k* units if *k* is negative).

The graphs of  $y = \sin x + 2$  and  $y = \sin x$  are shown below.



Similarly, the graph of  $y = a \cos nx + k$  is the graph of  $y = a \cos nx$  translated up *k* units (or down *k* units if *k* is negative).

## Horizontal Translation

Replacing the *x* with  $(x - \phi)$  shifts the graphs of  $y = \sin x$  and  $y = \cos x$  horizontally  $\phi$  units to the right.

Replacing the *x* with  $(x + \phi)$  shifts the graphs of  $y = \sin x$  and  $y = \cos x$  horizontally  $\phi$  units to the left.

#### Examples

1. Graph  $y = \sin(x - \frac{\pi}{2})$ 

The graph of  $y = \sin \left(x - \frac{\pi}{2}\right)$  shown in blue, superimposed on the graph of  $y = \sin x$ , in dashed red is shown below.



2. Graph 
$$y = \cos(x + \pi)$$

The graph of  $y = \cos(x + \pi)$ , shown in blue, superimposed on the graph of  $y = \cos x$ , in dashed red, is shown below.



3. Graph  $y = 3 \sin (4x - \pi)^{-1}$ 

<sup>1</sup> First change  $y = 3 \sin (4x - \pi)$  to the form  $y = 3 \sin 4 (x - \frac{\pi}{4})$  so that the horizontal translation of the graph is clear.



The graph of  $y = 3 \sin 4 \left(x - \frac{\pi}{4}\right)$  in black is superimposed on the graphs of  $y = 3 \sin x$  (dotted red) and  $y = 3 \sin 4x$  (dashed grey).

# Reflection

Changing the sign of *a* in the equations  $y = a \sin nx$  and  $y = a \cos nx$  results in reflection about the *x*-axis.

# Example



The graph of  $y = -3\cos 2x$  (in black) superimposed on the graph of  $y = 3\cos 2x$  (dotted).

# Exercise 1

**1.** Sketch the graphs of the following functions for one complete cycle stating the amplitude and the period.

(a)  $y = 2 \cos x$ (b)  $y = 2 \sin 3x$ (c)  $y = \frac{1}{2} \sin 2x$ (d)  $y = 3 \cos \frac{x}{2}$ (e)  $y = -2 \sin 3x$ 

Answers



Amplitude = 2 , Period =  $2\pi$ 

1(b)







Amplitude = 3 , Period =  $4\pi$ 



# Exercise 2

Sketch the graphs of the following functions for one complete cycle stating the amplitude and period.

(a)  $y = 2 \sin (x - \pi)$ (b)  $y = 3 \cos (x + \frac{\pi}{2})$ 

Answers

2(a)





## Exercise 3

Sketch the graphs of the following functions for one complete cycle stating the amplitude and period.

(a)  $y = 2 \sin (3x - \pi)$ (b)  $y = 3 \cos (4x - 2\pi)$ (c)  $y = 2 \sin (2x + \frac{\pi}{3})$ 

Answers

3(a)







Amplitude = 2 , Period =  $\pi$