FG10: Graphs of Sine and Cosine Functions

The functions $y=\sin x$ and $y=\cos x$ have a domain of \mathbb{R} and a range of $[-1,1]$.

The graphs of these functions are periodic graphs, that is, the shape of the graph repeats every set period.

The graphs of both functions have an amplitude of 1 and a period of 2π radians (that is the graph repeats every 2π units). They are
 shown below.

When looking at the graphs remember $\pi \approx 3.142$, so $2 \pi \approx 6.284$.
In this module we look at how the basic graphs may be transformed into graphs of more complex trigonometric functions.

Change of Amplitude and Period

The graphs of both $y=a \sin n x$ and $y=a \cos n x$ have an amplitude $|a|$ and a period of $\frac{2 \pi}{n}$.

Examples

1. Graph $y=3 \sin x$.

In this case, $a=3$ and $n=1$, therefore the graph has an amplitude of 3 and period of 2π.
2. Graph $y=3 \cos 2 x$.

In this case, $a=3$ and $n=2$, therefore the graph has an amplitude of 3 and period of $\frac{2 \pi}{2}=\pi$.

Vertical translation

The graph of $y=a \sin n x+k$ is the graph of $y=a \sin n x$ translated up k units (or down k units if k is negative).

The graphs of $y=\sin x+2$ and $y=\sin x$ are shown below.

Similarly, the graph of $y=a \cos n x+k$ is the graph of $y=a \cos n x$ translated up k units (or down k units if k is negative).

Horizontal Translation

Replacing the x with $(x-\phi)$ shifts the graphs of $y=\sin x$ and $y=$ $\cos x$ horizontally ϕ units to the right.
Replacing the x with $(x+\phi)$ shifts the graphs of $y=\sin x$ and $y=$ $\cos x$ horizontally ϕ units to the left.

Examples

1. Graph $y=\sin \left(x-\frac{\pi}{2}\right)$

The graph of $y=\sin \left(x-\frac{\pi}{2}\right)$ shown in blue, superimposed on the graph of $y=\sin x$, in dashed red is shown below.

2. Graph $y=\cos (x+\pi)$

The graph of $y=\cos (x+\pi)$, shown in blue, superimposed on the graph of $y=\cos x$, in dashed red, is shown below.

3. Graph $y=3 \sin (4 x-\pi)^{1}$

The graph of $y=3 \sin 4\left(x-\frac{\pi}{4}\right)$ in black is superimposed on the graphs of $y=3 \sin x$ (dotted red) and $y=3 \sin 4 x$ (dashed grey).

Reflection

Changing the sign of a in the equations $y=a \sin n x$ and $y=a \cos n x$ results in reflection about the x-axis.

Example

Graph $y=-3 \cos 2 x$.

The graph of $y=-3 \cos 2 x$ (in black) superimposed on the graph of $y=3 \cos 2 x$ (dotted).

Exercise 1

1. Sketch the graphs of the following functions for one complete cycle stating the amplitude and the period.
(a) $y=2 \cos x$
(b) $y=2 \sin 3 x$
(c) $y=\frac{1}{2} \sin 2 x$
(d) $y=3 \cos \frac{x}{2}$
(e) $y=-2 \sin 3 x$

Answers

Amplitude $=2$, Period $=2 \pi$

1(b)

Amplitude $=2$, Period $=\frac{2 \pi}{3}$

1(c)

1(d)

Amplitude $=3$, Period $=4 \pi$

Exercise 2

Sketch the graphs of the following functions for one complete cycle stating the amplitude and period.
(a) $y=2 \sin (x-\pi)$
(b) $y=3 \cos \left(x+\frac{\pi}{2}\right)$

Answers

2(a)

Amplitude $=2$, Period $=2 \pi$

Amplitude $=3$, Period $=2 \pi$

Exercise 3

Sketch the graphs of the following functions for one complete cycle stating the amplitude and period.
(a) $y=2 \sin (3 x-\pi)$
(b) $y=3 \cos (4 x-2 \pi)$
(c) $y=2 \sin \left(2 x+\frac{\pi}{3}\right)$

Answers

3(a)

3(b)

Amplitude $=3$, Period $=\frac{\pi}{2}$

Amplitude $=2$, Period $=\pi$

