## STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS



# PME1.4: ERRORS IN CALCULATIONS

#### Error in a Calculated Value

When a result is calculated from a number of values, each of which has an uncertainty, then it follows that the calculated result is also subject to uncertainty.

Indeed, errors accumulate – that is, the uncertainty increases.

#### Error in a sum or difference

Suppose a measurement consists of two lengths added together.

$$A = 4.0 \pm 0.2$$
 cm and  $B = 2.0 \pm 0.1$  cm

In adding A and B, the measured values are added, and also the uncertainties.

$$\therefore A + B = (4.0 + 2.0) \pm (0.2 + 0.1) \text{ cm}$$
  
 
$$A + B = 6.0 \pm 0.3 \text{ cm}$$

If the value that we seek is the difference between two lengths, for example A - B, then we calculate the difference between the measured values, but we still add the uncertainties.

$$A - B = (4.0 - 2.0) \pm (0.2 + 0.1) \text{ cm}$$
$$A - B = 2.0 \pm 0.3 \text{ cm}$$

The absolute error in a sum or difference is the sum of the absolute errors in each measurement.

## Error in a product or quotient

There are many circumstances in which we need to multiply or divide measurements by other measurements.

For instance, surface area is usually a multiple of two measurements.

Surface area 
$$_{rectangle} = length \times width$$

When multiplying or dividing two measurements that have an uncertainty associated with them, we always **add** the fractional or percentages errors in both cases. Percentage errors have been used below.

$$A \times B = (AB) \pm (AB \times \% \ error \ AB)$$
 and  $A \div B = \left(\frac{A}{B}\right) \pm \left(\frac{A}{B} \times \% \ error \frac{A}{B}\right)$ 

### Example 1

Calculate the area of a rectangle and its associated absolute error from the following data:

Length = 
$$14.26 \pm 0.02$$
cm, Width =  $5.94 \pm 0.02$ cm

#### Solution

% error in area = % error length + % error width

% error length = 
$$\frac{\text{absolute error length}}{\text{length}} \times 100 = \frac{0.02}{14.26} = 0.14\%$$

% error width = 
$$\frac{\text{absolute error width}}{\text{width}} \times 100 = \frac{0.02}{5.94} = 0.34\%$$

% error for Area = 0.14% + 0.34% = 0.48% (always add the errors)

Absolute Error for Area = (Area) 
$$\pm$$
 (Area  $\times$  % error of Area)  
=  $(14.26 \times 5.94) \pm (14.26 \times 5.94) \times 0.48\%$   
=  $84.7 \pm 0.4$ cm<sup>2</sup>

## Error in a power

If one quantity is raised to a power then the percentage error is added as many times as the power. eg, a value raised to a power of 3 would have its percentage error trebled. See next page for an example of a percentage error using powers.

## Example 2

For a sphere of radius  $5.0 \pm 0.1$  cm, calculate the volume of the sphere and its associated error.

#### Solution

Volume = 
$$\frac{4}{3} \times \pi \times (\text{radius})^3$$

Constants  $\frac{4}{3} \times \pi$  are ignored for errors

% error in volume =  $3 \times \%$  error in radius

The radius is cubed,  $\therefore$  error is  $\times$  3 If radius was squared, error would be  $\times$ 2

If radius was quadrupled, error would be ×4

$$=3 \times \frac{absolute error radius}{radius} \times 100$$

$$= 3 \times \frac{0.1}{5} \times 100 = 6\%$$

Volume = 
$$\frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times 5^3 = 524 \text{cm}^3$$

Absolute error in volume = volume  $\times$  % error volume

$$=$$
 31 cm<sup>3</sup>

$$\therefore$$
 Volume = 524  $\pm$  31 cm<sup>3</sup>

#### **Exercise**

1. If  $A = 6.0 \pm 0.1$ cm, and  $B = 3.4 \pm 0.2$ cm, calculate:

(a) 
$$A+B$$
, (b)  $A-B$  (c)  $A\times B$  (d)  $A\div B$ 

2. The mass of a square cube was found to be  $60.7\pm0.05$  g. A side length of this cube =  $1.5\pm0.05$  cm.

Calculate the density of the material and its associated error. (Density = Mass/Volume)

3. A cylinder has a height of  $10.3 \pm 0.05$  cm. Its radius is  $4.5 \pm 0.05$  cm.

Calculate the volume of the cylinder and its associated error? Volume  $V=\pi r^2 h$ 

#### **Answers**

1. (a)  $9.4 \pm 0.3$ cm (b)  $2.6 \pm 0.3$ cm (c)  $20.4 \pm 1.54$ cm (d)  $1.76 \pm 0.13$ cm 2.  $18 \pm 2.6$  g.cm<sup>-3</sup> 3.  $655 \pm 18$  cm<sup>3</sup>