ES4 Quadratic Formula

The solutions to any quadratic equation $a x^{2}+b x+c=0$ can be found by substituting the values a, b, c into the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solutions may be real or complex numbers.
In this module we only consider real solutions.

Example 1

Solve the equation:

$$
x^{2}-5 x+4=0
$$

Solution:

We have ${ }^{1} a=1, b=-5$ and $c=4$. Substituting into the formula ${ }^{1}$ Note that $x^{2}=1 \times x^{2}$ and so $a=1$. we get:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(4)}}{2(1)} \\
& =\frac{5 \pm \sqrt{25-16}}{2} \\
& =\frac{5 \pm \sqrt{9}}{2} \\
& =\frac{5 \pm 3}{2} \\
& =\frac{5+3}{2} \text { or } \frac{5-3}{2} \\
& =\frac{8}{2} \text { or } \frac{2}{2} \\
& =4 \text { or } 1 .
\end{aligned}
$$

The solution is $x=1$ or $x=4$.

Example 2

Solve the equation:

$$
x^{2}+x+10=0 .
$$

Solution:

We have $a=1, b=1$ and $c=10$. Substituting into the formula we get:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1^{2}-4(1)(10)}}{2(1)} \\
& =\frac{-1 \pm \sqrt{1-40}}{2} \\
& =\frac{-1 \pm \sqrt{-39}}{2} .
\end{aligned}
$$

Since the $\sqrt{-39}$ does not exist ${ }^{2}$ the equation has no solution.

Discriminant

The part of the quadratic formula which is under the radical sign ($b^{2}-4 a c$) is called the discriminant. Its value determines the number of solutions and whether they will be rational or irrational.

- If $b^{2}-4 a c<0$ there are no (real) solutions. This means the graph of $y=a x^{2}+b x+c$ doesn't touch or cut the x-axis.
- If $b^{2}-4 a c=0$ there is one solution. This means the graph of $y=a x^{2}+b x+c$ touches the x-axis at this value of x.
- If $b^{2}-4 a c>0$ there are two solutions. This means the graph of $y=a x^{2}+b x+c$ cuts the x-axis at these values of x.
- If $b^{2}-4 a c$ is a perfect square ${ }^{3}$ the solutions will be rational4.

Exercise

Solve the following quadratic equations for real solutions (if possible):
${ }^{2}$ There is a solution if we use complex numbers but we are looking for real solutions.

[^0]1. $x-4 x-7=0$
2. $x^{2}-2 x-2=0$
3. $x^{2}+6 x-9=0$
4. $x^{2}-x-7=0$
5. $4 x^{2}-12 x+6=0$
6. $2 x^{2}+x-2=0$
7. $x^{2}-4 x+2=0$
8. $2 x^{2}-3 x+2=0$
9. $3 x^{2}+5 x-7=0$
10. $3 x^{2}=x+1$
11. $4 x^{2}+x+3=0$
12. $\frac{3 x+1}{2}=\frac{x+1}{x}$

Answers

1. $x=\frac{4 \pm \sqrt{44}}{2}=2 \pm \sqrt{11}$
2. $x=\frac{2 \pm \sqrt{12}}{2}=1 \pm \sqrt{3}$
3. $x=\frac{-6 \pm \sqrt{72}}{2}=-3 \pm 3 \sqrt{2}$
4. $x=\frac{1 \pm \sqrt{29}}{2}$
5. $\quad x=\frac{12 \pm \sqrt{48}}{8}=\frac{3 \pm \sqrt{3}}{2}$
6. $x=\frac{-1 \pm \sqrt{17}}{4}$
7. $x=\frac{4 \pm \sqrt{8}}{2}=2 \pm \sqrt{2}$
8. no solution
9. $\quad x=\frac{-5 \pm \sqrt{109}}{6}$
10. $x=\frac{1 \pm \sqrt{13}}{6}$
11. no solution
12. $x=-\frac{2}{3}, \quad x=1$

[^0]: ${ }^{3}$ A number is a perfect square if its square root is an integer. Integers are whole numbers: ... , $-2,-1,0,1,2, \ldots$ ${ }^{4}$ A rational number can be expressed as a fraction p / q where p and $q \neq 0$ are integers.

