ES4 Quadratic Formula

The solutions to any quadratic equation $ax^2 + bx + c = 0$ can be found by substituting the values *a*, *b*, *c* into the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Solutions may be real or complex numbers.

In this module we only consider real solutions.

Example 1

Solve the equation:

$$x^2 - 5x + 4 = 0.$$

Solution:

We have a = 1, b = -5 and c = 4. Substituting into the formula we get:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(4)}}{2(1)}$
= $\frac{5 \pm \sqrt{25 - 16}}{2}$
= $\frac{5 \pm \sqrt{9}}{2}$
= $\frac{5 \pm 3}{2}$
= $\frac{5 \pm 3}{2}$ or $\frac{5 - 3}{2}$
= $\frac{8}{2}$ or $\frac{2}{2}$
= 4 or 1.

The solution is x = 1 or x = 4.

¹ Note that $x^2 = 1 \times x^2$ and so a = 1.

Example 2

Solve the equation:

 $x^2 + x + 10 = 0.$

Solution:

We have a = 1, b = 1 and c = 10. Substituting into the formula we get:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-1 \pm \sqrt{1^2 - 4(1)(10)}}{2(1)}$
= $\frac{-1 \pm \sqrt{1 - 40}}{2}$
= $\frac{-1 \pm \sqrt{-39}}{2}$.

Since the $\sqrt{-39}$ does not exist² the equation has no solution.

² There is a solution if we use complex numbers but we are looking for real solutions.

Discriminant

The part of the quadratic formula which is under the radical sign $(b^2 - 4ac)$ is called the discriminant. Its value determines the number of solutions and whether they will be rational or irrational.

- If $b^2 4ac < 0$ there are no (real) solutions. This means the graph of $y = ax^2 + bx + c$ doesn't touch or cut the *x*-axis.
- If $b^2 4ac = 0$ there is one solution. This means the graph of $y = ax^2 + bx + c$ touches the *x*-axis at this value of *x*.
- If $b^2 4ac > 0$ there are two solutions. This means the graph of $y = ax^2 + bx + c$ cuts the *x*-axis at these values of *x*.
- If $b^2 4ac$ is a perfect square³ the solutions will be rational⁴.

Exercise

Solve the following quadratic equations for real solutions (if possible):

³ A number is a perfect square if its square root is an integer. Integers are whole numbers: ..., -2, -1, 0, 1, 2, ... ⁴ A rational number can be expressed as a fraction p/q where p and $q \neq 0$ are integers.

1. x - 4x - 7 = 02. $x^2 - 2x - 2 = 0$ 3. $x^2 + 6x - 9 = 0$ 4. $x^2 - x - 7 = 0$ 5. $4x^2 - 12x + 6 = 0$ 6. $2x^2 + x - 2 = 0$ 7. $x^2 - 4x + 2 = 0$ 8. $2x^2 - 3x + 2 = 0$ 9. $3x^2 + 5x - 7 = 0$ 10. $3x^2 = x + 1$ 11. $4x^2 + x + 3 = 0$ 12. $\frac{3x+1}{2} = \frac{x+1}{x}$

Answers

1.	$x = \frac{4 \pm \sqrt{44}}{2} = 2 \pm \sqrt{11}$	2.	$x = \frac{2\pm\sqrt{12}}{2} = 1\pm\sqrt{3}$
3.	$x = \frac{-6 \pm \sqrt{72}}{2} = -3 \pm 3\sqrt{2}$	4.	$x = \frac{1 \pm \sqrt{29}}{2}$
5.	$x = \frac{12 \pm \sqrt{48}}{8} = \frac{3 \pm \sqrt{3}}{2}$	6.	$x = \frac{-1 \pm \sqrt{17}}{4}$
7.	$x = \frac{4\pm\sqrt{8}}{2} = 2\pm\sqrt{2}$	8.	no solution
9.	$x = \frac{-5 \pm \sqrt{109}}{6}$	10.	$x = \frac{1 \pm \sqrt{13}}{6}$
11.	no solution	12.	$x = -\frac{2}{3}, x = 1$