- RMIT
 UNIVERSITY

ES3 Quadratic Equations

This tip sheet looks at solutions to quadratic equations using the "null factor law".

General Form

A quadratic equation can be rearranged to the form: $a x^{2}+b x+c=0$ where $a \neq 0$.

Examples

$\left(\right.$ using $a x^{2}+b x+c=0$ determine a, b and $\left.c\right)$

1. $5 x^{2}-3 x+9=0 \quad a=5, b=-3, c=9$
2. $x^{2}=5 x-4 \Rightarrow x^{2}-5 x+4=0 \quad a=1, b=-5, c=4$
3. $\begin{aligned} & x=\frac{3}{2 x} \Rightarrow 2 x^{2}=3 \quad \Rightarrow \quad 2 x^{2}-3=0 \quad a=1, \quad b=0, \text {, } \\ & c=-3\end{aligned}$

Factorisation

If the equation can be factorised then the 'null factor law' can be used to find the solutions:

Null factor law uses the simple idea:
If $m \times n=0$, then $m=0$ and $/$ or $n=0$
If the product of two or more factors is zero then any one of the individual factors may be zero and provide a solution for the equation.

The solution to a quadratic equation gives the x - intercepts of its graph.

Example 1 (find all possible values of y)

$$
\begin{aligned}
y^{2} & =5 y \\
y^{2}-5 y & =0(\text { rearrange to form }) \\
y(y-5) & =0 \text { (rearrange })
\end{aligned}
$$

for this to be true

$$
\begin{aligned}
y & =0 \text { or }(y-5) \text { must equal zero, (null factor law) } \\
\therefore \mathbf{y} & =\mathbf{0} \text { or } \mathbf{y}=\mathbf{5}
\end{aligned}
$$

check by substututing back to $y^{2}=5 y$

$$
\begin{aligned}
& \text { If } y=0, \quad 0^{2}=5 \times 0(\text { checked }) \\
& \text { If } y=5, \quad 5^{2}=5 \times 5(\text { checked }) \\
& y^{2}=5 y
\end{aligned}
$$

Left Hand Side $=$ Right Hand Side

Example 2 (find all possible values of x)

$$
\begin{aligned}
& x^{2}-5 x+4=0 \\
& (x-4)(x-1)=0 \text { (factorise) } \\
& (x-4)=0 \text { or }(x-1)=0 \quad \text { (null factor law) } \\
& \therefore \mathbf{x}=\mathbf{4} \text { or } \mathbf{x}=\mathbf{1}
\end{aligned}
$$

check by substututing back to $x^{2}-5 x+4=0$

$$
\begin{aligned}
& \text { If } x=4,4^{2}-5 \times 4+4=0 \text { (checked) } \\
& \text { If } x=1,1^{2}-5 \times 1+4=0 \text { (checked) }
\end{aligned}
$$

Example 3 (find all possible values of p)

$$
\begin{aligned}
p^{2}+10 p+25 & =0 \\
(p+5)(p+5) & =0 \quad \text { (factorise) } \\
(p+5) & =0 \quad \text { (null factor law) } \\
\therefore \mathbf{p} & =-\mathbf{5}
\end{aligned}
$$

check by substututing back to $p^{2}+10 p+25=0$

$$
\text { If } p=-5 \operatorname{check}(-5)^{2}+10 \times(-5)+25=0
$$

Example 4 (find all possible values of m)

$$
\begin{aligned}
& 4 m^{2}-49=0 \\
&(2 m+7)(2 m-7)=0(\text { factorise by difference of squares) } \\
&(2 m+7)=0 \text { or }(2 m-7)=0 \text { (null factor law) } \\
& \therefore \mathbf{m}=\frac{-7}{\mathbf{2}} \text { or } \mathbf{m}=\frac{7}{2}
\end{aligned}
$$

check by substututing back to $4 m^{2}-49=0$

Example 5 (find all possible values of x)

$$
\begin{aligned}
& x=\frac{-6}{1-2 x} \text { provided } x \neq 1 / 2 \\
& \left.x-2 x^{2}=-6 \quad \text { (multiplying both sides by } 1-2 x\right) \\
& \left.2 x^{2}-x-6=0 \quad \text { (rearrange to form } a x^{2}+b x+c=0\right) \\
& (2 x+3)(x-2)=0 \quad \text { (factorise) } \\
& \therefore \mathbf{x}=\frac{-3}{\mathbf{2}} \text { or } \mathbf{x}=\mathbf{2} \quad \text { (solving using null factor law) }
\end{aligned}
$$

Exercises

Solve the following quadratic equations:

1. $x^{2}-6 x+8=0$
2. $x^{2}+2 x-3=0$
3. $2 x^{2}-3 x-2=0$
4. $6-z-z^{2}=0$
5. $2 x^{2}+7 x=15$
6. $11 p=3\left(2 p^{2}+1\right)$

Answers

1. $x=4, \quad x=2$
2. $x=-3, \quad x=1$
3. $x=-1 / 2, \quad x=2$
4. $z=-3, \quad z=2$
5. $x=3 / 2, \quad x=-5$
6. $p=1 / 3, \quad p=3 / 2$
