STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

DE2 FIRST ORDER LINEAR

If an equation can be written as

$$\frac{dy}{dx} + p(x). y = q(x)$$

Then it is termed a linear Differential Equation (DE).

Often the variables will not be separable.

If this is the case, then the integrating factor technique may be utilised to find a solution to the DE:

If
$$\frac{dy}{dx} + p(x) \cdot y = q(x)$$

Let $I = e^{\int p(x)dx}$
Then $y I = \int (I \times q(x))dx$
Solve for y .

Example:

Solve for y(x) given $\frac{dy}{dx} + 5y = e^{2x}$, and y(0) = 0Solution: Since the equation is in the form: $\frac{dy}{dx} + p(x)$. y = q(x)p(x) = 5 and $q(x) = e^{2x}$ We let $I = e^{\int p(x)dx}$ and $\int p(x) dx = \int 5 dx = 5x$ Since $I = e^{5x}$ Then We know the solution in the form: $y I = \int (I \times q(x)) dx$ Therefore: $ye^{5x} = \int e^{5x} \times e^{2x} dx$ $ye^{5x} = \int e^{7x} dx$ $ye^{5x} = \frac{1}{7}e^{7x} + c$ Dividing through by e^{5x} gives: $y = \frac{1}{7}e^{2x} + ce^{-5x}$ Given y(0) = 0, then $y(0) = \frac{1}{7}e^0 + ce^0 = \frac{1}{7} + c = 0$. Therefore $c = -\frac{1}{7}$ $y = \frac{1}{7} e^{2x} - \frac{1}{7} e^{-5x}$

Exercise

1. $3\frac{dy}{dx} + 12y = 4$	$2. x\frac{dy}{dx} + 2y = 3$
3. $\frac{dy}{dx} + 2xy = x$; $y(0) = -3$	$4. \frac{dy}{dx} + y = e^{3x}$
5. $y' + 3x^2y = x^2$	6. $x^2y' + xy = 1$
7. $xdy = (x \sin x - y)dx$	$8. \cos x \frac{dy}{dx} + y \sin x = 1$
$9. x\frac{dy}{dx} + 4y = x^3 - x$	10. $\cos^2 x \frac{dy}{dx} + y = 1$; $y(0) = -3$

Answers

1. $y = \frac{1}{3} + ce^{-4x}$	2. $y = \frac{3}{2} + cx^{-2}$	3. $y = \frac{1}{2} - \frac{7}{2}e^{-x^2}$	4. $y = \frac{1}{4}e^{3x} + ce^{-x}$
5. $y = \frac{1}{3} + ce^{-x^3}$	6. $y = x^{-1}lnx + cx^{-1}$	7. $y = -\cos x + \frac{\sin x}{x} + cx^{-1}$	$8. y = \sin x + c \cos x$
9. $y = \frac{1}{7}x^3 - \frac{1}{5}x + cx^{-4}$	10. $y = 1 - 4e^{-\tan x}$		