WORKED SOLUTIONS

ENDY2.1 BLOCKS \& PULLEYS

Question

Worked Solution

Measure the position of all blocks from a common datum, and dimension on drawing. These dimensions are position vectors and direction is important.
Let $\uparrow=+\mathrm{ve}$.

Determine the length of the two ropes in terms of the position vectors.

Eq $1 . \quad \mathrm{L}_{1}=2 x_{C}-x_{B}$
Eq². $\quad \mathrm{L}_{2}=2\left(x_{D}-x_{A}\right)+\left(x_{D}-x_{C}\right)+k=-2 x_{A}-x_{C}+3 x_{D}+k$

From our diagram above we note that $\mathrm{L}_{1}, \mathrm{~L}_{2}, x_{D}$ and k are all constants.

Differentiate both sides of the equations above with respect to time.
$E q^{\text {i }} 1$.

$$
\begin{aligned}
& \frac{d}{d t}\left(\mathrm{~L}_{1}\right)=\frac{d}{d t}\left(2 x_{C}-x_{B}\right) \\
& 0=2 \dot{x_{C}}-\dot{x_{B}} \\
& \dot{x_{C}}=\frac{\dot{x_{B}}}{2}=\frac{-1.2}{2}=-0.6 \mathrm{~ms}^{-1}
\end{aligned}
$$

Eqn: 2. $\quad \frac{d}{d t}\left(\mathrm{~L}_{2}\right)=\frac{d}{d t}\left(-2 x_{A}-x_{C}+3 x_{D}+k\right)$

$$
0=-2 \dot{x_{A}}-\dot{x_{C}}+3(0)
$$

$$
\dot{x}_{A}=\frac{-\dot{x}_{C}}{2}=\frac{-(-0.6)}{2}=0.3 \mathrm{~ms}^{-1}
$$

Differentiating again yields:

$$
\begin{aligned}
& 0=2 \ddot{x}_{C}-\ddot{x}_{B} \\
& \ddot{x}_{C}=\frac{\ddot{x_{B}}}{2}=\frac{0.6}{2}=0.3 \mathrm{~ms}^{-2} \\
& 0=-2 \ddot{x}_{A}-\ddot{x_{C}}+3(0) \\
& \ddot{x}_{A}=\frac{-\ddot{x}_{C}}{2}=\frac{-(0.3)}{2}=-0.15 \mathrm{~ms}^{-2}
\end{aligned}
$$

\therefore velocity of $\mathrm{A}=\dot{x_{A}}=0.3 \mathrm{~ms}^{-1}$
\therefore acceleration of $\mathrm{A}=\ddot{x_{A}}=-0.15 \mathrm{~ms}^{-2}$

