A3.4 Factorisation: Quadratics

The general form of a quadratic expression is: $ax^2 + bx + c$, $a \neq 0$, where *a*, *b* and *c* are real constants and *x* is the variable.

We will initially work with expressions that have a = 1 so the expression becomes $x^2 + bx + c$.

Image from Pixabay

Expansion

To expand an expression of the form (a + b)(c + d), multiply each term in the first bracket by each term in the second bracket.

$$(x+2)(x+3) = x(x+3) + 2(x+3)$$
$$= x^{2} + 3x + 2x + 6$$
$$= x^{2} + 5x + 6.$$

Factorisation

Factorisation is the reverse of expansion:

 $x^2 + 5x + 6$ is expressed as the product of two factors, (x + 2) and (x + 3). That is

$$x^{2} + 5x + 6 = (x + 2) (x + 3).$$

Note that:

- Multiplying the first term in each bracket gives the term x^2 in the expression as above.
- Multiplying the last term in each bracket gives the constant term, +6 in the expression.
- The coefficient of the *x* term is the sum of the last term in each bracket (+2 + 3 = +5).

Watch a short video on factorising quadratics

Download transcription of video on Factorising quadratics

The basic rule is:

To factorise $x^2 + bx + c$, find two numbers *m* and *n* such that

 $x^{2} + bx + c = (x + m)(x + n)$

where $m \times n = c$ and m + n = b.

Note that order of the factors does not matter. That is

$$x^{2} + bx + c = (x + m) (x + n)$$

= $(x + n) (x + m)$.

Example 1

Factorise $x^2 + 9x + 14$.

Solution:

We want to write

$$x^2 + 9x + 14 = (x+m)(x+n)$$

where according to the rule above,

$$m \times n = 14$$
 and $m + n = 9$.

The factors of 14 are

1. <i>m</i> = 1	2. $m = -1$	3. <i>m</i> = 2	4. $m = -2$
n = 14	n = -14	<i>n</i> = 7	n = -7.

Of these, only the factors in 3 satisfy the requirement that m + n = 9. So

$$x^{2} + 9x + 14 = (x + 2) (x + 7).$$

Example 2

Factorise $y^2 - 7y + 12$. Solution:

We want to write

$$y^{2} - 7x + 12 = (y + m)(y + n)$$

where according to the rule above,

$$m \times n = 12$$
 and $m + n = -7$.

The factors of 12 are

1.
$$m = 3$$
 2. $m = -3$ 3. $m = 2$ 4. $m = -2$ 5. $m = 12$ 6. $m = -12$
 $n = 4$ $n = -4$ $n = 6$ $n = -6$ $n = 1$ $n = -1$.

Of these, only the factors in 2 satisfy the requirement that m + n = -7. So

$$y^2 - 7x + 12 = (y - 3)(y - 4).$$

Example 3

Factorise $p^2 - 5p - 14$.

Solution:

We want to write

$$p^2 - 5p - 14 = (p+m)(p+n)$$

where according to the rule above,

$$m \times n = 14$$
 and $m + n = -5$.

The factors of -14 are

1.
$$m = 1$$

 $n = -14$
2. $m = -1$
 $n = 14$
3. $m = -2$
 $n = -2$
4. $m = 2$
 $n = -7$.

Of these, only the factors in 4 satisfy the requirement that m + n = -5. So

$$p^{2}-5x-14 = (p+2)(p-7).$$

Example 4

Factorise $a^2 + 6a - 7$.

Solution:

We want to write

$$a^{2} + 6a - 7 = (a + m)(a + n)$$

where according to the rule above,

$$m \times n = -7$$
 and $m + n = 6$.

The factors of -7 are

1.
$$m = 1$$

 $n = -7$
2. $m = -1$
 $n = 7$

Of these, only the factors in 2 satisfy the requirement that m + n = 6. So

$$a^{2} + 6a - 7 = (a - 1)(a + 7).$$

Example 5 (No Real Factors)

Factorise $a^2 + 3a + 6$.

Solution:

We want to write

$$a^{2} + 3a + 6 = (a + m)(a + n)$$

where according to the rule above,

$$m \times n = 6$$
 and $m + n = 3$.

The factors of 6 are

1. $m = 1$	2. $m = -1$	3. $m = -2$	4. <i>m</i> = 2
<i>n</i> = 6	n = -6	n = -3	n = 3.

None of these factors satisfy the requirement that m + n = 3. So it is not possible to factorise the expression

 $a^2 + 3a + 6.$

In this case we say there are no real factors.¹It is important to understand when this occurs and is discussed in a later section.

Factorisation when $a \neq 1$ *.*

In this section we deal with factorisation of expressions of the form

$$ax^2 + bx + c$$

where $a \neq 1$.

Expressions of the type $ax^2 + bx + c$ can be factorised using a technique similar to that used for expressions of the type $x^2 + bx + c$.

In this case the coefficient of *x*, in at least one bracket, will not equal 1.

Consider the following product.

¹ Geometrically this means that the graph of $y = a^2 + 3a + 6$ does not touch or intersect the *a* – axis. There are complex factors but these are not dealt with in this module.

$$(3x+2)(2x+1) = (3x)(2x) + (3x)(1) + (2)(2x) + (2)(1)$$
$$= 6x^{2} + 3x + 4x + 2$$
$$= 6x^{2} + 7x + 2.$$

Note that

- multiplying the first term in each bracket gives the x^2 term. In this case $6x^2$.
- multiplying the last term in each bracket gives the constant term, in this case 2.
- the coefficient of the *x*-term is the sum of the *x* terms in the expansion. In this case 3*x* + 4*x* = 7*x*.
 We can use these ideas to factorise expressions like *ax*² + *bx* + *c*.

Example 6

Factorise $2x^2 + 7x + 6$.

Solution:

The only factors of the coefficient of the x^2 term are 2 and 1. So we are looking for a factorisation like

$$2x^{2} + 7x + 6 = (2x + m) (x + n)$$

= $2x^{2} + 2nx + mx + nm$
= $2x^{2} + (2n + m) x + nm$

where mn = 6 and 2n + m = 7. We have the following possibilities:²

1.
$$m = 3$$
, $n = 2$

2. m = 2, n = 3

3.
$$m = 6$$
, $n = 1$

Of these possibilities, the only one that satisfies 2n + m = 7 is number 1. That is m = 2 and n = 2, so

$$2x^2 + 7x + 6 = (2x + 3)(x + 2).$$

Example 7

Factorise $2x^2 - 10x + 12$.

Solution:

At first this looks like a case where a = 2 but a factor of 2 can be taken out to get: ³

You should always check if there is a

³ You should always check if there is a number that divides into all terms of the quadratic.

² Note that negative factors like m = -6, n = -1 and m = -1, n = -6 don't need to be considered as they don't satisfy condition 2n + m = 7.

$$2x^2 - 10x + 12 = 2\left(x^2 - 5x + 6\right)$$

Now we can use the methods in Examples 1 - 4 above to get

$$2x^2 - 10x + 12 = 2(x+m)(x+n)$$

where mn = 6 and m + n = -5. This implies m = -2 and n = -3 and so:

$$2x^{2} - 10x + 12 = 2(x^{2} - 5x + 6)$$
$$= 2(x - 2)(x - 3)$$

Example 8

Factorise $6x^2 + 13x - 8$.

Solution:

In this case there are no numbers that divide into each term as we had in Example 7 above. The coefficient of the x^2 term is 6 which has factors

$$6 = 6 \times 1$$
$$= 2 \times 3.$$

So we are looking for a factorisation such as:

$$6x^{2} + 13x - 8 = (6x + m) (x + n)$$

= $6x^{2} + 6xn + mx - 8$
= $6x^{2} + (6n + m) x - 8$ (8.1)

or

$$6x^{2} + 13x - 8 = (3x + m) (2x + n)$$

= $6x^{2} + 3xn + 2mx - 8$
= $6x^{2} + (3n + 2m) x - 8$ (8.2)

In both cases, mn = -8. So we have the possibilities

$$m = -8$$
 $n = 1$
 $m = 8$
 $n = -1$
 $m = 4$
 $n = -2$
 $m = -4$
 $n = 2$.

For eqn (8.1) we know that 6n + m = 13. This is not satisfied by any of the *m* and *n* values above.

For eqn (8.2) we know that 3n + 2m = 13. This is satisfied by m = 8 and n = -1 and so

$$6x^2 + 13x - 8 = (3x + 8)(2x - 1).$$

Example 9

Factorise $4x^2 + 4x + 1$

Solution:

In this case there are no numbers that divide into each term as we had in Example 7 above. The coefficient of the x^2 term is 4 which has factors

$$4 = 4 \times 1$$
$$= 2 \times 2.$$

So we are looking for a factorisation such as:

$$4x^{2} + 4x + 1 = (4x + m) (x + n)$$

= $4x^{2} + 4xn + mx + mn$
= $4x^{2} + (4n + m) x + 1$ (9.1)

or

$$4x^{2} + 4x + 1 = (2x + m) (2x + n)$$

= 4x² + 2xn + 2mx + mn
= 4x² + (2n + 2m) x + 1 (9.2)

where mn = 1. That means

$$m = 1$$
 $n = 1$ (9.3)
 $m = -1$ $n = -1.$ (9.4)

Suppose eqn (9.1) is correct then (4n + m) = 4. But this is not possible with the choices for *m* and *n* in (9.3) and (9.4). Hence the factorisation must be as in eqn (9.2) with 2n + 2m = 4. The latter is achieved with (9.3) and so

$$4x^2 + 4x + 1 = (2x + 1)(2x + 1).$$

The approach given in examples 6-9 is okay provided there are not too many factors for *a* and *c*. If the number of factors is excessive, we can employ other methods.

When Can you Get Real Linear Factors for a Quadratic?

In Example 5 above we found that we could not get real linear factors for

$$a^2 + 3a + 6.$$

This raises the question of when real solutions to general quadratics may be found. The most general quadratic has the form ⁴

⁴ Note that the graph of

$$y = ax^2 + bx + c$$

is a parabola.

$$ax^2 + bx + c$$

To determine if there are real linear factors, we introduce the discriminant.

The Discriminant

The discriminant denoted Δ , for the general quadratic

$$ax^2 + bx + c$$

is

$$\Delta = b^2 - 4ac.$$

If

 $\Delta = \begin{cases} 0 \text{ there is one repeated linear factor} \\ > 0 \text{ there are two distinct linear factors} \\ < 0 \text{ there are no real linear factors.} \end{cases}$

The discriminant tells us how many real roots there are to the equation $^{5}\,$

$$ax^2 + bx + c = 0$$

Example 10

Factorise (if possible) $x^2 + 6x + 12$ Solution:

In this case: a = 1 , b = +6 , c = +12 therefore

$$\Delta = (b^2 - 4ac)$$

= 36 - 4(1)(12)
= 36 - 48
= -12
< 0.

The discriminant is negative therefore $x^2 + 6x + 12$ has no real factors.

Exercise 1

Factorise the following expressions (if possible):

a) $x^2 + 10x + 21$	b) $z^2 + 11z + 18$	c) $x^2 + 5x - 14$
d) $m^2 - m - 72$	e) $x^2 + 6x + 9$	f) $a^2 - 15a + 44$
g) $x^2 - 2x - 24$	h) $y^2 - 10y + 16$	i) $z^2 + 4z - 60$
j) $n^2 + 6n - 16$	k) $a^2 + 5a + 10$	l) $s^2 + 2s - 48$
m) $y^2 + 7y + 19$	n) $x^2 + 16x + 39$	o) $x^2 - 14x + 45$

⁵ Geometrically, the discriminant tells us how many times the graph of

 $y = ax^2 + bx + c$

intersects the *x*-axis. If $\Delta = 0$, the graph just touches the *x*-axis at one point. If $\Delta > 0$, the graph intersects the *x*-axis at two points. If $\Delta < 0$, the graph does not intersect the *x*-axis.

Answers

Note that order of factors does not matter.

a) $(x+7)(x+3)$	b) $(z+9)(z+2)$	c) $(x+7)(x-2)$
d) $(m-9)(m+8)$	e) $(x+3)(x+3)$	f) $(a - 11) (a - 4)$
g) $(x-6)(x+4)$	h) $(y-2)(y-8)$	i) $(z-6)(z+10)$
j) $(n-2)(n+8)$	k) no real factors	l) $(s+8)(s-6)$
m) no real factors	n) $(x+13)(x+3)$	o) $(x-9)(x-5)$.

Exercise 2

Factorise the following if possible. a) $5x^2 + 13x + 6$ b) $2x^2 + x - 15$ c) $3m^2 - m - 2$ d) $3y^2 - 10y + 8$ e) $2a^2 + 11a + 12$ f) $6x^2 - 11x + 5$

Answers

Note that order of factors does not matter.

a) $(5x+3)(x+2)$	b) $(2x-5)(x+3)$	c) $(3m+2)(m-1)$
d) $(3y - 4) (y - 2)$	e) $(2a+3)(a+4)$	f) $(6x-5)(x-1)$.