A3.4 Factorisation: Quadratics

The general form of a quadratic expression is: $a x^{2}+b x+c, a \neq 0$, where a, b and c are real constants and x is the variable.

We will initially work with expressions that have $a=1$ so the expression becomes $x^{2}+b x+c$.

Image from Pixabay

Expansion

To expand an expression of the form $(a+b)(c+d)$, multiply each term in the first bracket by each term in the second bracket.

$$
\begin{aligned}
(x+2)(x+3) & =x(x+3)+2(x+3) \\
& =x^{2}+3 x+2 x+6 \\
& =x^{2}+5 x+6 .
\end{aligned}
$$

Factorisation

Factorisation is the reverse of expansion:
$x^{2}+5 x+6$ is expressed as the product of two factors, $(x+2)$ and $(x+3)$. That is

$$
x^{2}+5 x+6=(x+2)(x+3) .
$$

Note that:

- Multiplying the first term in each bracket gives the term x^{2} in the expression as above.
- Multiplying the last term in each bracket gives the constant term, +6 in the expression.
- The coefficient of the x term is the sum of the last term in each bracket $(+2+3=+5)$.

Watch a short video on factorising quadratics

Download transcription of video on Factorising quadratics

The basic rule is:
To factorise $x^{2}+b x+c$, find two numbers m and n such that

$$
x^{2}+b x+c=(x+m)(x+n)
$$

where $m \times n=c$ and $m+n=b$.
Note that order of the factors does not matter. That is

$$
\begin{aligned}
x^{2}+b x+c & =(x+m)(x+n) \\
& =(x+n)(x+m)
\end{aligned}
$$

Example 1

Factorise $x^{2}+9 x+14$.

Solution:

We want to write

$$
x^{2}+9 x+14=(x+m)(x+n)
$$

where according to the rule above,

$$
\begin{aligned}
& m \times n=14 \text { and } \\
& m+n=9
\end{aligned}
$$

The factors of 14 are

1. $m=1$
$n=14$
2. $m=-1$
$n=-14$
3. $m=2$
$n=7$
4. $m=-2$
$n=-7$.

Of these, only the factors in 3 satisfy the requirement that $m+n=9$.
So

$$
x^{2}+9 x+14=(x+2)(x+7)
$$

Example 2

Factorise $y^{2}-7 y+12$.

Solution:

We want to write

$$
y^{2}-7 x+12=(y+m)(y+n)
$$

where according to the rule above,

$$
\begin{aligned}
& m \times n=12 \text { and } \\
& m+n=-7
\end{aligned}
$$

The factors of 12 are

1. $m=3$
2. $m=-3$
3. $m=2$
4. $m=-2$
5. $m=12$
6. $m=-12$
$n=4$
$n=-4$
$n=6$
$n=-6$
$n=1$
$n=-1$.

Of these, only the factors in 2 satisfy the requirement that $m+n=$ -7 . So

$$
y^{2}-7 x+12=(y-3)(y-4)
$$

Example 3

Factorise $p^{2}-5 p-14$.

Solution:

We want to write

$$
p^{2}-5 p-14=(p+m)(p+n)
$$

where according to the rule above,

$$
\begin{aligned}
& m \times n=14 \text { and } \\
& m+n=-5
\end{aligned}
$$

The factors of -14 are

1. $m=1$
$n=-14$
2. $m=-1$
$n=14$
3. $m=-2$
$n=7$
4. $m=2$
$n=-7$.

Of these, only the factors in 4 satisfy the requirement that $m+n=$ -5 . So

$$
p^{2}-5 x-14=(p+2)(p-7)
$$

Example 4

Factorise $a^{2}+6 a-7$.

Solution:

We want to write

$$
a^{2}+6 a-7=(a+m)(a+n)
$$

where according to the rule above,

$$
\begin{aligned}
& m \times n=-7 \text { and } \\
& m+n=6
\end{aligned}
$$

The factors of -7 are

1. $m=1$
$n=-7$
2. $m=-1$
$n=7$

Of these, only the factors in 2 satisfy the requirement that $m+n=$ 6. So

$$
a^{2}+6 a-7=(a-1)(a+7)
$$

Example 5 (No Real Factors)

Factorise $a^{2}+3 a+6$.

Solution:

We want to write

$$
a^{2}+3 a+6=(a+m)(a+n)
$$

where according to the rule above,

$$
\begin{aligned}
& m \times n=6 \text { and } \\
& m+n=3
\end{aligned}
$$

The factors of 6 are

1. $m=1$
2. $m=-1$
$n=-6$
3. $m=-2$
$n=-3$
4. $m=2$
$n=3$.

None of these factors satisfy the requirement that $m+n=3$. So it is not possible to factorise the expression

$$
a^{2}+3 a+6
$$

In this case we say there are no real factors. ${ }^{1}$ It is important to understand when this occurs and is discussed in a later section.

Factorisation when $a \neq 1$.

In this section we deal with factorisation of expressions of the form

$$
a x^{2}+b x+c
$$

where $a \neq 1$.
Expressions of the type $a x^{2}+b x+c$ can be factorised using a technique similar to that used for expressions of the type $x^{2}+b x+c$.

In this case the coefficient of x, in at least one bracket, will not equal 1 .

Consider the following product.

$$
\begin{aligned}
(3 x+2)(2 x+1) & =(3 x)(2 x)+(3 x)(1)+(2)(2 x)+(2)(1) \\
& =6 x^{2}+3 x+4 x+2 \\
& =6 x^{2}+7 x+2
\end{aligned}
$$

Note that

- multiplying the first term in each bracket gives the x^{2} term. In this case $6 x^{2}$.
- multiplying the last term in each bracket gives the constant term, in this case 2.
- the coefficient of the x-term is the sum of the x terms in the expansion. In this case $3 x+4 x=7 x$.
We can use these ideas to factorise expressions like $a x^{2}+b x+c$.

Example 6

Factorise $2 x^{2}+7 x+6$.

Solution:

The only factors of the coefficient of the x^{2} term are 2 and 1 . So we are looking for a factorisation like

$$
\begin{aligned}
2 x^{2}+7 x+6 & =(2 x+m)(x+n) \\
& =2 x^{2}+2 n x+m x+n m \\
& =2 x^{2}+(2 n+m) x+n m
\end{aligned}
$$

where $m n=6$ and $2 n+m=7$. We have the following possibilities: ${ }^{2}$

1. $m=3, n=2$
2. $m=2, n=3$
3. $m=6, n=1$

Of these possibilities, the only one that satisfies $2 n+m=7$ is number

1. That is $m=2$ and $n=2$, so

$$
2 x^{2}+7 x+6=(2 x+3)(x+2)
$$

Example 7

Factorise $2 x^{2}-10 x+12$.

Solution:

At first this looks like a case where $a=2$ but a factor of 2 can be taken out to get: 3
${ }^{2}$ Note that negative factors like $m=$ $-6, n=-1$ and $m=-1, n=-6$ don't need to be considered as they don't satisfy condition $2 n+m=7$.

[^0]$$
2 x^{2}-10 x+12=2\left(x^{2}-5 x+6\right)
$$

Now we can use the methods in Examples $1-4$ above to get

$$
2 x^{2}-10 x+12=2(x+m)(x+n)
$$

where $m n=6$ and $m+n=-5$. This implies $m=-2$ and $n=-3$ and so:

$$
\begin{aligned}
2 x^{2}-10 x+12 & =2\left(x^{2}-5 x+6\right) \\
& =2(x-2)(x-3)
\end{aligned}
$$

Example 8

Factorise $6 x^{2}+13 x-8$

Solution:

In this case there are no numbers that divide into each term as we had in Example 7 above. The coefficient of the x^{2} term is 6 which has factors

$$
\begin{aligned}
6 & =6 \times 1 \\
& =2 \times 3 .
\end{aligned}
$$

So we are looking for a factorisation such as:

$$
\begin{align*}
6 x^{2}+13 x-8 & =(6 x+m)(x+n) \\
& =6 x^{2}+6 x n+m x-8 \\
& =6 x^{2}+(6 n+m) x-8 \tag{8.1}
\end{align*}
$$

or

$$
\begin{align*}
6 x^{2}+13 x-8 & =(3 x+m)(2 x+n) \\
& =6 x^{2}+3 x n+2 m x-8 \\
& =6 x^{2}+(3 n+2 m) x-8 \tag{8.2}
\end{align*}
$$

In both cases, $m n=-8$. So we have the possibilities

$$
\begin{array}{ll}
m=-8 & n=1 \\
m=8 & n=-1 \\
m=4 & n=-2 \\
m=-4 & n=2 .
\end{array}
$$

For eqn (8.1) we know that $6 n+m=13$. This is not satisfied by any of the m and n values above.

For eqn (8.2) we know that $3 n+2 m=13$. This is satisfied by $m=8$ and $n=-1$ and so

$$
6 x^{2}+13 x-8=(3 x+8)(2 x-1)
$$

Example 9

Factorise $4 x^{2}+4 x+1$

Solution:

In this case there are no numbers that divide into each term as we had in Example 7 above. The coefficient of the x^{2} term is 4 which has factors

$$
\begin{aligned}
4 & =4 \times 1 \\
& =2 \times 2 \times 2
\end{aligned}
$$

So we are looking for a factorisation such as:

$$
\begin{align*}
4 x^{2}+4 x+1 & =(4 x+m)(x+n) \\
& =4 x^{2}+4 x n+m x+m n \\
& =4 x^{2}+(4 n+m) x+1 \tag{9.1}
\end{align*}
$$

or

$$
\begin{align*}
4 x^{2}+4 x+1 & =(2 x+m)(2 x+n) \\
& =4 x^{2}+2 x n+2 m x+m n \\
& =4 x^{2}+(2 n+2 m) x+1 \tag{9.2}
\end{align*}
$$

where $m n=1$. That means

$$
\begin{array}{ll}
m=1 & \\
m=1 \tag{9.4}\\
m=-1 & \\
n=-1 .
\end{array}
$$

Suppose eqn (9.1) is correct then $(4 n+m)=4$. But this is not possible with the choices for m and n in (9.3) and (9.4). Hence the factorisation must be as in eqn (9.2) with $2 n+2 m=4$. The latter is achieved with (9.3) and so

$$
4 x^{2}+4 x+1=(2 x+1)(2 x+1)
$$

The approach given in examples 6-9 is okay provided there are not too many factors for a and c. If the number of factors is excessive, we can employ other methods.

When Can you Get Real Linear Factors for a Quadratic?

In Example 5 above we found that we could not get real linear factors for

$$
a^{2}+3 a+6
$$

This raises the question of when real solutions to general quadratics may be found. The most general quadratic has the form ${ }^{4}$
${ }^{4}$ Note that the graph of

$$
y=a x^{2}+b x+c
$$

is a parabola.

$$
a x^{2}+b x+c
$$

To determine if there are real linear factors, we introduce the discriminant.

The Discriminant

The discriminant denoted Δ, for the general quadratic

$$
a x^{2}+b x+c
$$

is

$$
\Delta=b^{2}-4 a c
$$

If

$$
\Delta=\left\{\begin{array}{l}
0 \text { there is one repeated linear factor } \\
>0 \text { there are two distinct linear factors } \\
<0 \text { there are no real linear factors. }
\end{array}\right.
$$

The discriminant tells us how many real roots there are to the equation 5

$$
a x^{2}+b x+c=0
$$

Example 10

Factorise (if possible) $x^{2}+6 x+12$

Solution:

In this case: $a=1, b=+6, c=+12$ therefore

$$
\begin{aligned}
\Delta & =\left(b^{2}-4 a c\right) \\
& =36-4(1)(12) \\
& =36-48 \\
& =-12 \\
& <0
\end{aligned}
$$

The discriminant is negative therefore $x^{2}+6 x+12$ has no real factors.

Exercise 1

Factorise the following expressions (if possible):
a) $x^{2}+10 x+21$
b) $z^{2}+11 z+18$
c) $x^{2}+5 x-14$
d) $m^{2}-m-72$
e) $x^{2}+6 x+9$
f) $a^{2}-15 a+44$
g) $x^{2}-2 x-24$
h) $y^{2}-10 y+16$
i) $z^{2}+4 z-60$
j) $n^{2}+6 n-16$
k) $a^{2}+5 a+10$

1) $s^{2}+2 s-48$
m) $y^{2}+7 y+19$
n) $x^{2}+16 x+39$
o) $x^{2}-14 x+45$
${ }^{5}$ Geometrically, the discriminant tells us how many times the graph of

$$
y=a x^{2}+b x+c
$$

intersects the x-axis. If $\Delta=0$, the graph just touches the x-axis at one point. If $\Delta>0$, the graph intersects the x-axis at two points. If $\Delta<0$, the graph does not intersect the x-axis.

Answers

Note that order of factors does not matter.
a) $(x+7)(x+3)$
b) $(z+9)(z+2)$
c) $(x+7)(x-2)$
d) $(m-9)(m+8)$
e) $(x+3)(x+3)$
f) $(a-11)(a-4)$
g) $(x-6)(x+4)$
h) $(y-2)(y-8)$
i) $(z-6)(z+10)$
j) $(n-2)(n+8)$
k) no real factors

1) $(s+8)(s-6)$
$\mathrm{m})$ no real factors
n) $(x+13)(x+3)$
o) $(x-9)(x-5)$.

Exercise 2

Factorise the following if possible.
a) $5 x^{2}+13 x+6$
b) $2 x^{2}+x-15$
c) $3 m^{2}-m-2$
d) $3 y^{2}-10 y+8$
e) $2 a^{2}+11 a+12$
f) $6 x^{2}-11 x+5$

Answers

Note that order of factors does not matter.
a) $(5 x+3)(x+2)$
b) $(2 x-5)(x+3)$
c) $(3 m+2)(m-1)$
d) $(3 y-4)(y-2)$
e) $(2 a+3)(a+4)$
f) $(6 x-5)(x-1)$.

[^0]: ${ }^{3}$ You should always check if there is a number that divides into all terms of the quadratic.

