A3.3 Factorisation: Difference of Two Sı

The difference of two squares formula is commonly used in mathematics. It allows us to factorise terms such as

$$
\begin{array}{r}
x^{2}-36 \\
5 x^{2}-20 y^{2} \\
a^{2}-b^{2}
\end{array}
$$

Difference of Twa Squares

This module explains the formula and shows how it may be used to factorise algebraic expressions.

It is an important rule that you should commit to memory.

Factorisation: Difference of Two Squares (DOTS).

Consider the following expansion:

$$
\begin{aligned}
(x+5)(x-5) & =x^{2}-5 x+5 x-25 \\
& =x^{2}-25 \\
& =x^{2}-5^{2}
\end{aligned}
$$

In general,

$$
\begin{aligned}
(x+a)(x-a) & =x^{2}-a x+a x-a^{2} \\
& =x^{2}-a^{2} .
\end{aligned}
$$

Note that:

- The terms in the brackets differ only in the sign of the second term
- The expansion is the difference of two terms, both of which are perfect squares

More generally:

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

so

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

and is known as the DOTS (Difference Of Two Squares) rule.
This can be used to factorise expressions of the form $a^{2}-b^{2}$.

Watch a short video on factorising using " Difference of two squares"

Download a transcript of the video on " Difference of two squares"

Examples:

1. Factorise $a^{2}-36$.

Solution:

$$
a^{2}-36=a^{2}-(6)^{2} \text { expression is the difference of two squares }
$$

$$
=(a+6)(a-6) \text { using the DOTS rule }
$$

$$
=(a-6)(a+6) \text { order doesn't matter, either is correct. }
$$

2. Factorise $4^{2}-y^{2}$.

Solution:

$$
\begin{aligned}
4^{2}-y^{2} & =(2)^{2}-y^{2} \text { expression is the difference of two squares } \\
& =(2+y)(2-y) \text { using the DOTS rule. }
\end{aligned}
$$

3. Factorise $3 x^{2}-48$.

Solution:
At first sight, we cannot use DOTS. But taking out a common factor of 3 we have

$$
\begin{aligned}
3 x^{2}-48 & =3\left(x^{2}-16\right) \\
& =3\left(x^{2}-4^{2}\right) \\
& =3(x+4)(x-4) \text { using the DOTS rule. }
\end{aligned}
$$

4. Factorise $(x+2)^{2}-9$.

Solution:

$$
\begin{aligned}
(x+2)^{2}-9 & =(x+2)^{2}-3^{2} \text { expression is the difference of two squares } \\
& =(x+2+3)(x+2-3) \text { using the DOTS rule } \\
& =(x+5)(x-1) .
\end{aligned}
$$

5. Factorise $y^{2}+36$.

Solution:
This expression is the sum of two squares, not the difference hence the DOTS rule cannot be applied. There are no real factors for this expression. ${ }^{1}$
${ }^{1}$ There are complex factors but we do not consider them in this module.

Exercise

Factorise the following expressions using the DOTS rule (if possible):
a. $x^{2}-4$
b. $a^{2}-100$
c. $49-x^{2}$
d. $64 x^{2}-1$
e. $121 x^{2}-49 y^{2}$
f. $a^{2} b^{2}-25$
g. $5 x^{2}-20 \quad$ h. $a^{2}+100$
i. $x^{2} y^{3}-36 y \quad$ j. $(x+2)^{2}-y^{2}$
k. $(x-5)^{2}-36$

1. $(a+1)^{2}-(b-2)^{2}$

Answers

a. $(x+2)(x-2)$
b. $(a+10)(a-10)$
c. $(7+x)(7-x)$
d. $(8 x+1)(8 x-1)$
e. $(11 x+7 y)(11 x-7 y)$
f. $(a b+5)(a b-5)$
g. $5(x+2)(x-2)$
h. Does not factorise.
i. $y(x y+6)(x y-6)$
j. $(x+2+y)(x+2-y)$
k. $(x-11)(x+1)$

1. $(a+b-1)(a-b+3)$.
