A3.1 Factorisation: Common Factors

This module looks at using common factors to factorise mathematical expressions.

Watch a short video on factorisation using common factors

Click to download a transcription of the video on Factorisation using common factors

Expansion

Expansion of brackets (or removing brackets) in an algebraic expression is done by multiplying all the terms inside the brackets by the term(s) outside the brackets.

Examples:

$$6(7) = 42$$

$$6(b+1) = 6b + 6$$

$$3(4x+5) = 12x + 15$$

$$5a(3y-2x) = 15ay - 10ax$$

Factorisation is the Reverse of Expansion.

Factors are numbers we can multiply together to get another number.

To factorise a number or algebraic expression means to write the number or expression as a product (multiplication) of numbers or expressions.

Examples:

- 1. $42 = 6 \times 7 = 2 \times 3 \times 7$ has factors 6 and 7 but also has factors of 2 and 3 .
- 2. $-2xyz=-1 \times 2 \times x \times y \times z$ has factors -1, 2, *x*, *y*, *z* but remember that combinations are factors such as $-2 \times xy \times z$ which means that -2, *xy*, *xyz*, and *z* are factors as well.
- 3. $6b + 6 = 6(b + 1) = 2 \times 3 \times (b + 1)$ has factors 6 and (b + 1) as well as 2 and 3, the Highest Common Factor of 6b + 6 is 6.

Image from Pixabay

- 4. 12x + 15 = 3(4x + 5) has factors 3 and 4x + 5. The Highest Common Factor of (12x + 15) is 3.
- 5. 15ay 10ax = 5a(3y 2x) has factors 5, *a* and (3y 2x), 5*a* and 5(3y 2x). The Highest Common Factor of (3y 2x) is 5*a*.
- 6. 4prs + 16pr + 2ps + 8p = 2p(2rs + 8r + s + 4) = 2p(2r + 1)(s + 4)has factors 2, p, (2r + 1), (s + 4) as well as (2rx + 8r + s + 4) as well as 2p.

Expansion means removing brackets Factorisation means inserting brackets

Factorisation by Removing a Common Factor

The steps are:

- Search each term in the expression for a common factor (every term must have this factor)
- There may be several common factors. Search until you have found all of them
- If there is more than one common factor multiply them to give Highest Common Factor . (HCF)
- The HCF is placed before the bracket.
- The terms inside the bracket are found by dividing each term by the HCF.

Examples:

1.

$$5y + 10 = 5 \times y + 5 \times 2$$

= 5(y + 2)
common factor of 5

$$3x + 3y = 3 \times x + 3 \times y$$
$$= 3(x + y)$$
common factor of 3

3.

$$p^{2} + p = p \times p + p \times 1$$
$$= p(p+1)$$
common factor of p

4.

$$7y^2 + 7y = 7y \times y + 7y \times 1$$

= $7y(y + 1)$
common factors of 7 and y
HCF = $7y$

5.

$$2abc - 12ac = 2a \times bc - 2a \times 6c$$

= $2ac \times b - 2ac \times 6$
= $2ac(b - 6)$
common factors of 2, a, and c
HCF = $2ac$

See exercise 1.

Further Examples (Negative Factors)

6.

$$-2a - 2b = (-2) \times a + (-2) \times b$$
$$= -2(a + b)$$
common factor of -2

7.

$$-3x + 6xy = (-3x) \times 1 - (-3x) \times 2y$$

= -3x(1 - 2y) HCF = -3x
= 3x(-1 + 2y) HCF = 3x
= 3x(2y - 1)

See exercise 2

Exercise 1

Factorise the following expressions (if possible):

a)	3x + 3y	b)	2a-2b	c)	8a - 8b + 8c
d)	xy - 5x	e)	$x^{2} - x$	f)	7x + 21y
g)	5m - 2n	h)	$c^2 - 2bc - 3c$	i)	5mn - 10n
j)	$3m^2 - 3mnp$	k)	$7x + 21x^2$	1)	$12m^2 - 18mn$
m)	5xy - 10xz	n)	$5pq - pq^2 - 3pqr$	o)	$2ab^2c + 6abc^2$
p)	$rst + 5rst^2 - 2rs$	q)	5mn + 10m - pqr	r)	$5xyz - x^2yz^2 + 10x$

Answers Exercise 1

a)	3(x+y)	b)	2(a-b)	c)	8(a-b+c)
d)	x(y-5)	e)	x(x-1)	f)	7(x+3y)
g)	no factors	h)	c(c-2b-3)	i)	5n(m-2)
j)	3m(m-np)	k)	7x(1+3x)	1)	6m(2m-3n)
m)	$rs(t+5t^2-2)$	n)	pq(5-q-3r)	o)	2abc(b+3c)
p)	$rs\left(t+5t^2-2\right)$	q)	no factors	r)	$x(5yz - xyz^2 + 10)$

Exercise 2

Factorise the following by removing a negative factor.

a)	-3x-6y	b)	-15xy + 25xz	c)	-2xy+4xyz
d)	14xyz - 7xy	e)	$-6xyz - 15yz - 3xy^2z$	f)	7x - 21y

Answers Exercise 2

a)
$$-3(x+2y)$$
 b) $-5x(y-5z)$ c) $-2xy(1-2z)$
d) $7xy(2z-1)$ e) $-3yz(2x+5+xy)$ f) $7(x-3y)$