A2.1 Rearranging Formulae

Rearranging formulas (also called transposing of formulas) is a necessary skill for many courses. This module looks at some essential skills required before you move on to more complicated examples.

Play a short video.
Get a transcript of the video.

Introduction

Some of the most important equations that we might be required to transpose occur frequently in science, engineering and economics. They are called formulae and give a general rule describing the relationship between variable quantities

Here are some examples:

$$
\begin{gathered}
A=\pi r^{2} \\
s=u t+\frac{1}{2} a t^{2} \\
S=P(1+i)^{n}
\end{gathered}
$$

In these examples A, s and S are, respectively, the subjects ${ }^{1}$ of the formulae. Sometimes a formula is given in a particular form and it is necessary to rearrange the formula to make a different variable the subject:

We know the area of a circle $A=\pi r^{2}$ where r is the radius and so we can calculate A for any value of r. What if we know the area A and have to calculate the radius r ? ${ }^{2}$

We know $s=u t+\frac{1}{2} a t^{2}$ but what if we know s and t and want to calculate a ? 3

${ }^{1} A, s$ and S are called subjects because they are on the left hand side of the formula and followed by an equal sign.
${ }^{2}$ We need r to be the subject rather than A.
${ }^{3}$ We need a to be the subject rather than s.

Basic Rule

When rearranging equations and formulas, whatever you do on one side of the equal sign, you must do on the other.

Examples

1. Make A the subject in the formula $A+B=C$.

Solution:4

$$
\begin{aligned}
A+B & =C \\
A+B-B & =C-B \quad \text { subtracting } B \text { from both sides } \\
A & =C-B .
\end{aligned}
$$

2. Make A the subject in the formula $A-B=C$.

Solution: ${ }^{5}$

$$
\begin{aligned}
A-B & =C \\
A-B+B & =C+B \quad \text { adding } B \text { to both sides } \\
A & =C+B .
\end{aligned}
$$

3. Make A the subject in the formula $A B=C$.

Solution: ${ }^{6}$

$$
\begin{array}{rlrl}
A B & =C & \\
\frac{A B}{B} & =\frac{C}{B} & & \text { dividing both sides by } B \\
A & =\frac{C}{B} & & \text { cancelling the } B^{\prime} \text { 's on the left side. }
\end{array}
$$

4. Make A the subject in the formula $\frac{A}{B}=C$.

Solution: ${ }^{7}$

$$
\begin{aligned}
\frac{A}{B} & =C \\
\frac{A B}{B} & =B C \quad \text { multiplying both sides by } B \\
A & =B C \text { cancelling the } B^{\prime} \text { s on the left side. }
\end{aligned}
$$

5. Make A the subject of the formula $A^{2}=B$.

Solution: ${ }^{8}$

$$
\begin{aligned}
A^{2} & =B \\
\sqrt{A^{2}} & =\sqrt{B} \quad \text { taking the square root of both sides } \\
A & =\sqrt{B} .
\end{aligned}
$$

${ }^{4}$ We have to get rid of the B term on the left hand side to get A on its own. The B is being added to A on the left side so we subtract B from the left side to get rid of the B terms on the left. Our rule says we must subtract the B from the right side as well.
${ }^{5}$ We have to get rid of the B term on the left hand side to get A on its own. The B is being subtracted from A on the left side so we add B to the left side to get rid of it. Our rule says we must add B to the right side as well.
${ }^{6}$ We have to get rid of the B term on the left hand side to get A on its own. The B is multiplying A on the left side so we divide by B on the left side to get rid of it. Our rule says we must divide by B on the right side as well.
${ }^{7}$ We have to get rid of the B term on the left hand side to get A on its own. The B is dividing A on the left side so we multiply by B on the left side to get rid of it. Our rule says we must multiply by B on the right side as well.

[^0]6. Make A the subject of the formula $\sqrt{A}=B$.

Solution: ${ }^{9}$

$$
\begin{aligned}
\sqrt{A} & =B \\
(\sqrt{A})^{2} & =B^{2} \\
A & =B^{2}
\end{aligned}
$$

${ }^{9}$ This case involves \sqrt{A}. The inverse (opposite) operation to the square root is squaring. So to get A on its own we need to square both sides.

Inverse operations

In the above examples we used inverse operations to " undo" operations. Remember:

subtraction undoes addition	conversely	addition undoes subtraction
division undoes multiplication	conversely	multiplication undoes division
square root undoes square	conversely	square undoes square root
$\sqrt[n]{x}$ undoes x^{n}	conversely	x^{n} undoes $\sqrt[n]{x}$

Also remember:
$B+C=A$ is the same as $A=B+C$ and
$\sqrt{A^{2}}=A$ and $(\sqrt{B})^{2}=B$. For example: $\sqrt{3^{2}}=3$ and $(\sqrt{25})^{2}=25$.

Examples:

1. Transform $V=A-K$ to make A the subject

Solution:

$$
\begin{aligned}
V & =A-K \quad(\text { we want } A \text { to be the subject) } \\
V+K & =A-K+K \quad(\text { add } K \text { to both sides }) \\
V+K & =A \\
A & =V+K \quad(\text { making } A \text { the subject })
\end{aligned}
$$

2. Make d the subject of $C=\pi d$

$$
\begin{aligned}
& C=\pi d \quad(\text { we want } d \text { to be the subject }) \\
& \left.\frac{C}{\pi}=\frac{\pi d}{\pi} \quad \text { (divide both sides by } \pi \text { then cancelling }\right) \\
& \frac{C}{\pi}=d \\
& \left.d=\frac{C}{\pi} \quad \text { (making } d \text { the subject }\right)
\end{aligned}
$$

3. Rearrange $j=3 w-5$ in terms of w.

$$
\begin{aligned}
j & =3 w-5 \quad(\text { we want } w \text { to be the subject }) \\
j+5 & =3 w-5+5 \quad(\text { add } 5 \text { to both sides) } \\
j+5 & =3 w \quad(\text { giving } 3 w \text { as the subject }) \\
\frac{j+5}{3} & =\frac{3 w}{3} \quad \text { (divide both sides by } 3 \text { then cancelling) } \\
\frac{j+5}{3} & =w \\
w & =\frac{j+5}{3} \quad \text { (making } w \text { the subject) }
\end{aligned}
$$

4. Make c the subject of $E=m c^{2}$.

$$
\begin{aligned}
E & =m c^{2} \quad(\text { we want } c \text { to be the subject }) \\
\frac{E}{m} & =\frac{m c^{2}}{m} \quad(\text { divide both sides by } m) \\
\frac{E}{m} & =c^{2} \quad(\text { cancelling }) \\
\sqrt{\frac{E}{m}} & =\sqrt{c^{2}} \quad \text { (square root both sides) } \\
\sqrt{\frac{E}{m}} & =c \quad\left(\text { remember } \sqrt{3^{2}}=3\right) \\
c & =\sqrt{\frac{E}{m}} \quad \text { (rearanging making } c \text { the subject) }
\end{aligned}
$$

Exercises:

1. $m=n-2 \quad$ Find n
2. $A=2 B+C$
Find C
3. $A=2 B+C$ Find B
4. $\quad P=\frac{k}{v}$
Find K
5. $\quad P V=k \quad$ Find V
6. $v=u+a t$
Find a
7. $v=u+a t$
Find t
8. $r=\sqrt{\frac{A}{\pi}}$
Find A
9. $\quad A=x^{2}$
Find x
10. $A=\pi r^{2} \quad$ Find r

Answers:

1. $n=m+2$
2. $C=A-2 B$
3. $B=\frac{A-C}{2}$
4. $k=P V$
5. $\quad V=\frac{K}{P}$
6. $\quad a=\frac{V-U}{t}$
7. $t=\frac{V-U}{a}$
8. $A=\pi r^{2}$
9. $x= \pm \sqrt{A}$
10. $r= \pm \sqrt{\frac{A}{\pi}}$

[^0]: ${ }^{8}$ This case involves A^{2}. The inverse (opposite) operation to squaring is the square root. So to get A on its own we need to take the square root of both sides.

