A1.1 Algebraic Operations

In this module we introduce the basic skills for addition, subtraction, multiplication and division of algebraic expressions. Courses in science, engineering and other fields require you to have these skills.

Play a short video on Algebraic Operations
Download a script of the video.

Like and Unlike Terms

Like terms contain exactly the same pro-numerals ${ }^{1}$. The following table gives some examples of like and unlike terms.

Like Terms	Unlike Terms
$3 x, 5 x$	$3 x, 5 y$
$2 a,-3 a$	$3 a, 3$
$m^{2}, 7 m^{2}$	$m^{2}, 7 m$
$2 a b, 3 a b$	$2 a^{2} b, 3 a b^{2}$
$3 x y z, 5 x y z$	$3 x y z, 3 x y$
$3 e f, 3 \mathrm{fe}$	$3 e f, 3 e g$
$6 \alpha \beta, \beta \alpha$	$6 \alpha \beta \gamma, 6 \alpha \beta$

For some practice, please go to Exercise 1 below.

Addition and Subtraction

The essential rule is:
Only like terms may be added or subtracted.
Example 1.

$$
\begin{aligned}
7 e+10 e & =7 \times e+10 \times e \\
& =(7+10) e \\
& =17 e .
\end{aligned}
$$

In practice we would not put in the first line. It is included to reinforce what $7 e$ and $10 e$ mean. In practice we would probably go straight to the answer. That is $7 e+10 e=17 e$.

A page from Al-Khwarizmi's
"al-Kitab al-muhtasar fi hisab
al-gabr wa-l-muqabala", an early
book on algebra. (Image from https:/ /en.wikipedia.org/wiki/
The_Compendious_Book_on_Calculation_ by_Completion_and_Balancing) ${ }^{1}$ A pro-numeral is a combination of letters, symbols and numbers. For example, $3 x$ is a pro-numeral. In algebra, when we write $3 x$ we really mean $3 \times x$. Another example of a pronumeral is $5 a b$. This means $5 \times a \times b$. Note that $5 a b=5 b a$. The order of the letters and numbers is not important but usually we write numbers first and use alphabetical order for the letters. While $5 b a$ is correct, it is more common to write $5 a b$.

Example 2.

$$
\begin{aligned}
3 x^{2}-x^{2}-4 x^{2} & =(3-1-4) x^{2} \\
& =-2 x^{2}
\end{aligned}
$$

Example $3 .{ }^{2}$

$$
\begin{aligned}
3 m-4 n+6 m+n & =(3+6) m+(-4+1) n \\
& =9 m-3 n
\end{aligned}
$$

Example 4.

$$
\begin{aligned}
3 a-b-5 a+4 a b-3 b+a b & =(3-5) a+(-1-3) b+(4+1) a b \\
& =-2 a-4 b+5 a b
\end{aligned}
$$

Example 5.

$$
3 x-x^{2} \quad \text { there are no like terms so nothing can be done. }
$$

Example 6.

$$
p+2 p-3=3 p-3
$$

Example 7.

$$
8 u v+3 u-10 v u=-2 u v+3 u
$$

Example 8.
$6 r^{2} s-2 r s^{2}$ there are no like terms so nothing can be done.
For some practice, please go to Exercise 2 below.

Multiplication

Both like and unlike terms may be multiplied. When multiplying two or more terms consider:

1. The sign of the answer. ${ }^{3}$
2. The product of the terms.

Here are some examples:

1. $(-4) \times(-3 b)=12 b$
2. $-2 \times 6 y=-12 y$
3. $2 e \times\left(-5 e^{2}\right)=-10 e^{3}$
4. $\left(-2 u^{2} v\right) \times(-4 v)=8 u^{2} v^{2}$
5. $-3 p q \times(-2 q) \times p=6 p^{2} q^{2}$
${ }^{2}$ This example shows how we can
■
gather different like terms. In this case m and n. .

Division

In algebra, we often use fractions. For example: 4

$$
\frac{2}{5}=2 \div 5
$$

Similarly for algebraic terms:

$$
\frac{2 x^{2} y z}{3 x y^{2}}=2 x^{2} y z \div 3 x y^{2}
$$

When dividing algebraic terms:

1. Rewrite as a fraction if necessary
2. Expand any powers
3. Establish the sign of the answer ${ }^{5}$
4. Cancel any common factors

Examples

1. Divide $-12 w y z$ by $3 y z$.

Solution:

$$
\begin{aligned}
-12 w y z \div 3 y z & =\frac{-12 w y z}{3 y z} \quad \text { write as a fraction } \\
& =-\frac{12 w y z}{3 y z} \quad \text { determine sign } \\
& =-4 w \quad \text { cancel common factors. }
\end{aligned}
$$

2. Divide $2 m^{2} n$ by $-6 m n^{2}$.

Solution:

$$
\begin{aligned}
2 m^{2} n \div 6 m n^{2} & =\frac{2 m^{2} n}{-6 m n^{2}} \\
& =-\frac{2 m^{2} n}{6 m n^{2}} \\
& =-\frac{m}{3 n} .
\end{aligned}
$$

3. Simplify $6 a^{2} \times 4 a b \div 12 a b$.

Solution:

$$
\begin{aligned}
6 a^{2} \times 4 a b \div 12 a b & =\frac{6 a^{2} \times 4 a b}{12 a b} \quad \text { write as a fraction } \\
& =\frac{24 a^{3} b}{12 a b} \quad \text { establish sign and expand powers } \\
& =2 a^{2} \quad \text { cancel common factors. }
\end{aligned}
$$

${ }^{4}$ In this case the top term, 2 is called the numerator, the bottom term 5 , is called the denominator and the horizontal line between them is called the fraction bar, division bar or vinculum.
${ }^{5}$ In doing the division, remember the basic rules for determining the sign of the quotient.

$$
\begin{aligned}
& (+v e) \div(+v e)=(+v e) \\
& (+v e) \div(-v e)=(-v e) \\
& (-v e) \div(+v e)=(-v e) \\
& (-v e) \div(-v e)=(+v e) .
\end{aligned}
$$

4. Divide $m+2$ by $4 m$

$$
(m+2) \div 4 m=\frac{m+2}{4 m}
$$

There are no common factors and so it is not possible to simplify further.

For practice examples see Exercise 3.

Order of Operations

The basic operations of arithmetic are multiplication, division, addition and subtraction. Usually the order in which we perform the operations is important.

For example, what is the answer to the following arithmetic problem

$$
4+3 \times 2+5 ?
$$

At first sight there are several possible answers.
Working from left to right we get:

$$
\begin{aligned}
4+3 \times 2+5 & =7 \times 2+5 \\
& =14+5 \\
& =19 .
\end{aligned}
$$

Working from right to left we get:

$$
\begin{aligned}
4+3 \times 2+5 & =4+3 \times 7 \\
& =4+21 \\
& =25
\end{aligned}
$$

If we do the multiplication first we get another answer:

$$
\begin{aligned}
4+3 \times 2+5 & =4+6+5 \\
& =15
\end{aligned}
$$

Yet another answer is obtained by doing the additions first:

$$
\begin{aligned}
4+3 \times 2+5 & =7 \times 7 \\
& =49
\end{aligned}
$$

Mathematicians don't like imprecision. In order to allow only one answer to the problem we perform operations in the following order:

1. Brackets
2. Indices
3. Multiplication and Division from left to right
4. Addition and Subtraction

Using the first letters (bold) we get the abbreviation BIMDAS.
Applying this rule the answer to our problem is

$$
\begin{aligned}
4+3 \times 2+5 & =4+6+5 \text { multiplication first } \\
& =15 \text { then addition. }
\end{aligned}
$$

Examples:

1. $3 \times 2+4=6+4=10$.
2. $3+2 \times 4=3+8=11$.
3. $(3+2) \times 4=5 \times 4=20$.
4. $3-2^{2}=3-2 \times 2=3-4=-1$.
5. $(3-2)^{2}=(3-2) \times(3-2)=1 \times 1=1$.
6. $3^{2}-2^{2}=3 \times 3-2 \times 2=9-4=5$.
7. $3 s t-3 s \times 4 t=3 s t-12 s t=-9 s t$.

For some practice, see Exercise 4.

Exercise 1

Which of the five terms on the right is a like term with the term on the left?

1)	$3 x$	3	$2 x$	$3 x^{2}$	$2 x y$	$4 x^{2} a$
2)	$2 a b$	$2 a$	$2 b$	$3 x^{2}$	$6 a b c$	$12 a b$
3)	$2 x^{2}$	x	$2 x$	$5 x^{2}$	$4 x$	$4 x^{3}$
4)	$3 x y^{2}$	3	$3 x y$	$3 x^{2} x y^{2}$	$3 y^{2}$	$y^{2} x$
5)	$2 m^{2} n$	n	$m n^{2}$	$8 m n$	$2 m^{2}$	$4 n m^{2}$
6)	$4 a b^{2} c$	4	$2 a b^{2} c$	$4 a b c$	$8 b^{2} c$	$4 c b a$

Exercise 2

Simplify each of the following:
a) $13 x+4-3 x-1$
b) $10 m n+5 m+12 m n+6 m$
c) $3 x y^{2}+2 x y+5 x y^{2}+3 x y$
d) $5 x y+6 m-2 x y-2 m$
e) $x+y+2 x-y$
f) $3 a+5 b-a-6 b$
g) $x+4 y-x-2 y$
h) $7 x-4 m-5 x-3 m$
i) $4 x-5 x-3 y+5 x$
j) $9 m n-3 m-n+4 m^{2}$

Exercise 3

Simplify the following algebraic expressions:
1.
a) $5 \times 2 k$
b) $4 a \times 3 a b$
c) $y \times 3 y$
d) $4 m \times(-3 m n)$
e) $m \times 39 \times 5$
f) $2 a b \times 3 b c \times(-4)$
g) $2 a b^{2} \times 3 a c$
h) $4 m \times(-5 k m p)$
2.
a) $18 e f \div 6 f$
b) $-100 \mathrm{uvw} \div 100 \mathrm{w}$
c) $24 g h^{2} \div 8 g h$
d) $3 m^{2} n \div 12 m n^{2}$
e) $r s \times 2 s t \div 2 s$
f) $3 j k \times 12 \mathrm{~km} \div 9 j \mathrm{~km}$
g) $10 p \times 3 q p \div 16 p q$
h) $4 y z \times 5 w^{2} z \div 10 w y$

Exercise 4

Simplify the following expressions:

1) $18+(3 \times(-5))$
2) $3 \times(-4)+(8 \times 2)$
3) $10-5^{2}+3$
4) $(10-5)^{2}+3$
5) $10^{2}-5^{2}$
6) $(10-5)^{2}$
7) $3 \mathrm{~m}+2 \times 3 \mathrm{~m}$
8) $6 a b-3 a \times 4 b$
9) $16 g h-4 g h \times 4$
10) $9 b-3 b \times 2 k+2 k \times b$

Answers

Exercise 1

1. $2 x$
2. $12 a b$
3. $5 x^{2}$
4. $y^{2} x$
5. $4 \mathrm{~nm}^{2}$
6. $2 a b^{2} c$

Exercise 2
a) $10 x+3$
b) $22 m n+11 m$
c) $8 x y^{2}+5 x y$
d) $3 x y+4 m$
e) $3 x$
f) $2 a-b$
g) $2 y$
h) $2 x-7 m$
i) $5 x-3 y$
j) $9 m n-3 m-n+4 m^{2}$

Exercise 3

1. a) 10 k
b) $12 a^{2} b$
c) $3 y^{2}$
d) $-12 m^{2} n$
e) 15 mp
f) $-24 a b^{2} c$
g) $6 a^{2} b^{2} c$
h) $-20 k m^{2} p$
2. a) $3 e$
b) $-u v$
c) 3 h
d) $m / 4 n$
e) $r s t$
f) $4 k$
g) $15 p / 8$
h) $2 w z^{2}$

Exercise 4
1.3
2. 4
3. -12
4. 28
5. 75
6. 25
7. 9 m
8. $-6 a b$
9. 0
10. $9 b-4 b k$

