D8: Maxima and Minima

The maximum or minimum values of a function occur where the derivative is zero. That is where the graph of teh function has a horizontal tangent. Using calculus we can find trhe derivative of a function $f(x)$ with respect to x and use this to find maximum and minimum values of $f(x)$ and the values of x where they occur. We can therefore use calculus to solve problems that involve maximizing or minimizing functions.

Definition

The maximum or minimum values of a finction $f(x)$ occur when the derivative

$$
\begin{equation*}
f^{\prime}(x)=0 . \tag{1}
\end{equation*}
$$

Second Derivative Test.

Let x satisfy (1) then if

$$
f^{\prime \prime}(x)\left\{\begin{array}{l}
=0, x \text { is an inflection point } \\
<0, f(x) \text { is a local maximum } \\
>0, f(x) \text { is a local minimum }
\end{array}\right.
$$

Example 1

The distance $s \mathrm{~km}$, to the nearest km , of a fishing boat from port at any time, t hours, is given by the formula

$$
s=2+8 t-2.5 t^{2}
$$

When is the boat furthest from port and what is its distance from the port at that time?

Solution

For a maximum or minimum, $d s / d t=0$. That is

$$
\begin{aligned}
\frac{d s}{d t} & =8-5 t \\
& =0
\end{aligned}
$$

So,

$$
\begin{aligned}
8-5 t & =0 \\
5 t & =8 \\
t & =1.6 \text { hours. }
\end{aligned}
$$

Now this could be a maximum or minimum distance. However,

$$
\begin{aligned}
\frac{d^{2} s}{d t^{2}} & =-5 \\
& <0
\end{aligned}
$$

Hence $t=1.6$ is a maximum. When $t=1.6$ hours, the distance from port,

$$
\begin{aligned}
s & =2+8(1.6)-2.5(1.6)^{2} \\
& =8.4 \mathrm{kms} .
\end{aligned}
$$

The boat is furthest from port after 1.6 hours and the distance from port, at that time, is 8.4 kms .

Example 2

Find the maximum product of two numbers that have a sum of 10 .

Solution

Let the numbers be a and b. Then

$$
\begin{equation*}
a+b=10 \tag{2.1}
\end{equation*}
$$

Let the product of the two numbers be P so

$$
P=a \times b
$$

From (2.1) ${ }^{1}$

$$
a=10-b
$$

so

$$
\begin{aligned}
P & =(10-b) b \\
& =10 b-b^{2} .
\end{aligned}
$$

Now

$$
\frac{d P}{d b}=10-2 b
$$

${ }^{1}$ We need to get P in terms of a or b so that we take a derivative like $d P / d a$ or $d P / d b$. In this case we write P as a function of b but identical results are obtained is we make P a function of a.

For a maximum or minimum, $d P / d b=0$,

$$
\begin{align*}
10-2 b & =0 \\
2 b & =10 \\
b & =5 . \tag{2.2}
\end{align*}
$$

But

$$
\begin{aligned}
\frac{d^{2} P}{d b^{2}} & =-2 \\
& <0
\end{aligned}
$$

and we have a maximum. Substituting $b=5$ in (2.1) we find $a=5$.
Hence the two numbers adding to 10 and having a maximal product are $a=b=5$ and the maximum product is 25 .

Example 3

Find the minimum value of the function $f(x)=x^{2}-5 x+6$.

Solution

We have

$$
\begin{equation*}
f^{\prime}(x)=2 x-5 \tag{3.1}
\end{equation*}
$$

For a maximum or minimum we know

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
2 x-5 & =0 \\
2 x & =5 \\
x & =\frac{5}{2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 \\
& >0
\end{aligned}
$$

for all values of x we know we have a minimum. Hence the minimum value of $f(x)=x^{2}-5 x+6$ occurs at $5 / 2$.

The minimum value of the function is

$$
\begin{aligned}
f(x) & =\left(\frac{5}{2}\right)^{2}-5\left(\frac{5}{2}\right)+6 \\
& =\frac{25}{4}-\frac{25}{2}+\frac{12}{2} \\
& =\frac{25}{4}-\frac{50}{4}+\frac{24}{4} \\
& =-\frac{1}{4}
\end{aligned}
$$

Exercises

1. Find two positive numbers whose sum is 18 such that the sum of their squares is a minimum.
2. Find the turning point of the parabola defined by $y=f(x)=$ $5 x^{2}-30 x+17$.
3. What is the maximum area that can be enclosed if a rectangle is created with a piece of wire 48 cm long?
4. The annual profit P made on a garment is related to the number n that are produced by the formula $P(n)=300 n-7200-0.2 n^{2}$. How many garments should be produced to maximize profit?

Answers

1. The two numbers are both 9 .
2. $(3,-28)$
3. $144 \mathrm{~cm}^{2}$
4. 750
