D7: The Quotient Rule

The quotient rule is used when we want to differentiate a function which is the quotient of two simpler functions. Functions such as $y=f(x)=\frac{1}{x^{2}+x}, y=f(x)=\frac{\sin x}{x}$ and $y=f(x)=\frac{x^{2}+1}{x+1}$ may be differentiated using the quotient rule.

$$
\begin{gathered}
y=\frac{u(x)}{v(x)} \\
\frac{d y}{d x}=\frac{v(x) \frac{d}{d x} u(x)-\frac{d}{d x} v(x) u(x)}{(v(x))^{2}} \\
y^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}}
\end{gathered}
$$

Definition

If

$$
f(x)=\frac{u(x)}{v(x)}
$$

then

$$
f^{\prime}(x)=\frac{v(x) u^{\prime}((x))-u(x) v^{\prime}(x)}{(v(x))^{2}}
$$

This is often abbreviated to

$$
\begin{aligned}
y^{\prime} & =f^{\prime}(x) \\
& =\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
\end{aligned}
$$

View short video on the quotient rule.

Examples

1) If $y=\frac{1+x}{x^{2}-3}$, find $\frac{d y}{d x}$.

Solution
Let

$$
u=1+x \text { and } v=x^{2}-3
$$

then

$$
u^{\prime}=1 \text { and } v^{\prime}=2 x
$$

Hence using the quotient rule,

$$
\begin{aligned}
\frac{d y}{d x} & =y^{\prime} \\
& =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{\left(x^{2}-3\right)(1)-(1+x) 2 x}{\left(x^{2}-3\right)^{2}} \\
& =\frac{x^{2}-3-2 x-2 x^{2}}{\left(x^{2}-3\right)^{2}} \\
& =\frac{-x^{2}-2 x-3}{\left(x^{2}-3\right)^{2}} .
\end{aligned}
$$

2) Differentiate $\frac{x^{2}}{\log _{e} x}$ with respect to x.

Solution

Let

$$
y=\frac{x^{2}}{\log _{e}(x)}
$$

and

$$
\begin{aligned}
u & =x^{2} \\
v & =\log _{e}(x) .
\end{aligned}
$$

Then

$$
u^{\prime}=2 x \text { and } v^{\prime}=\frac{1}{x} .
$$

Hence, using the quotient rule,

$$
\begin{aligned}
y^{\prime} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{\log _{e}(x) \cdot(2 x)-x^{2} \cdot \frac{1}{x}}{\left(\log _{e} x\right)^{2}} \\
& =\frac{2 x \log _{e}(x)-x}{(\log (x))^{2}} .
\end{aligned}
$$

Exercise

Find the derivatives of the following functions with respect to x.

1) $f(x)=\frac{2 x+1}{4 x-3}$
2) $f(x)=\frac{3}{3 x^{2}+1}$
3) $y=\frac{\sqrt{x}}{1-\sqrt{x}}$
4) $y=\frac{e^{x}}{\sin ^{2} x}$

Answers

1) $f^{\prime}(x)=\frac{-10}{(4 x-3)^{2}}$
2) $f^{\prime}(x)=\frac{-18 x}{\left(3 x^{2}+1\right)^{2}}$
3) $y^{\prime}=\frac{1}{2 x^{\frac{1}{2}}\left(1-x^{\frac{1}{2}}\right)^{2}}$ (after simplifying)
4) $y^{\prime}=\frac{e^{x}(\sin x-2 \cos x)}{\sin ^{3} x}$ (after simplifying)
