

## D7: The Quotient Rule

The quotient rule is used when we want to differentiate a function which is the quotient of two simpler functions. Functions such as  $y = f(x) = \frac{1}{x^2+x}$ ,  $y = f(x) = \frac{\sin x}{x}$  and  $y = f(x) = \frac{x^2+1}{x+1}$  may be differentiated using the quotient rule.

Definition

 $\mathbf{If}$ 

$$f(x) = \frac{u(x)}{v(x)}$$

then

$$f'(x) = \frac{v(x)u'((x)) - u(x)v'(x)}{(v(x))^2}.$$

This is often abbreviated to

$$y' = f'(x)$$
$$= \frac{vu' - uv'}{v^2}$$

View short video on the quotient rule.

Examples

1) If 
$$y = \frac{1+x}{x^2-3}$$
, find  $\frac{dy}{dx}$ .  
Solution  
Let

u = 1 + x and  $v = x^2 - 3$ 

then

$$u' = 1$$
 and  $v' = 2x$ .

Hence using the quotient rule,

$$y = \frac{u(x)}{v(x)}$$
$$\frac{dy}{dx} = \frac{v(x)\frac{d}{dx}u(x) - \frac{d}{dx}v(x)u(x)}{(v(x))^2}$$
$$y' = \frac{vu' - v'u}{v^2}$$

$$\frac{dy}{dx} = y'$$

$$= \frac{vu' - uv'}{v^2}$$

$$= \frac{(x^2 - 3)(1) - (1 + x)2x}{(x^2 - 3)^2}$$

$$= \frac{x^2 - 3 - 2x - 2x^2}{(x^2 - 3)^2}$$

$$= \frac{-x^2 - 2x - 3}{(x^2 - 3)^2}.$$

2) Differentiate  $\frac{x^2}{\log_e x}$  with respect to *x*. Solution

Let

and

Then

$$u' = 2x$$
 and  $v' = \frac{1}{x}$ .

 $v = \log_e(x).$ 

 $y = \frac{x^2}{\log_e\left(x\right)}$ 

 $u = x^2$ 

Hence, using the quotient rule,

$$y' = \frac{vu' - uv'}{v^2}$$
$$= \frac{\log_e(x) \cdot (2x) - x^2 \cdot \frac{1}{x}}{(\log_e x)^2}$$
$$= \frac{2x \log_e(x) - x}{(\log(x))^2}.$$

Exercise

Find the derivatives of the following functions with respect to *x*. 1)  $f(x) = \frac{2x+1}{4x-3}$ 

1) 
$$f(x) = \frac{2x+1}{4x-3}$$
  
2) 
$$f(x) = \frac{3}{3x^2+1}$$
  
3) 
$$y = \frac{\sqrt{x}}{1-\sqrt{x}}$$
  
4) 
$$y = \frac{e^x}{\sin^2 x}$$
  
Answers

1) 
$$f'(x) = \frac{-10}{(4x-3)^2}$$
  
2)  $f'(x) = \frac{-18x}{(3x^2+1)^2}$   
3)  $y' = \frac{1}{2x^{\frac{1}{2}} (1-x^{\frac{1}{2}})^2}$  (after simplifying)  
4)  $y' = \frac{e^x(\sin x - 2\cos x)}{\sin^3 x}$  (after simplifying)