D6: The Product Rule

The product rule is used when we want to differentiate the product of two functions. The derivatives of functions such as $y=f(x)=$

$$
\frac{d y}{d x}=v(x) \frac{d}{d x} u(x)+\frac{d}{d x} v(x) u(x)
$$ $2 x \sin (x)$ and $y=f(x)=x e^{x}$ can be found using the product rule.

Definition

$$
y^{\prime}=v u^{\prime}+v^{\prime} u
$$

If

$$
\begin{aligned}
y & =f(x) \\
& =u(x) \cdot v(x)
\end{aligned}
$$

then

$$
\begin{aligned}
y^{\prime} & =f^{\prime}(x) \\
& =u(x) \cdot v^{\prime}(x)+u^{\prime}(x) \cdot v(x)
\end{aligned}
$$

This is often abbreviated to

$$
y^{\prime}=u v^{\prime}+u^{\prime} v
$$

View short video on the product rule.

Examples

1. Find the derivative of $f(x)=(x+3)^{6}(2 x-1)$.

Solution:
Let $u=(x+3)^{6}$ and $v=2 x-1$, then using the chain rule ${ }^{1}$

$$
u^{\prime}=6(x+3)^{5}
$$

and

$$
v^{\prime}=2
$$

Hence, using the product rule,

$$
\begin{aligned}
y^{\prime} & =u v^{\prime}+u^{\prime} v \\
& =(x+3)^{6} \cdot 2+6(x+3)^{5}(2 x-1) \\
& =(x+3)^{5}[2(x+3)+6(2 x-1)] \\
& =14 x(x+3)^{5} .
\end{aligned}
$$

2. Differentiate $e^{x} \sin (2 x)$.

Solution:
Let $u=e^{x}$ and $v=\sin (2 x)$, then

$$
\begin{aligned}
& u^{\prime}=e^{x} \\
& v^{\prime}=2 \cos (2 x)
\end{aligned}
$$

where we have used the chain rule to evaluate $v^{\prime} .{ }^{2}$ Hence, using the product rule,

$$
\begin{aligned}
y^{\prime} & =u v^{\prime}+u^{\prime} v \\
& =e^{x} \cdot 2 \cos (2 x)+e^{x} \sin (2 x) \\
& =2 e^{x} \cos (2 x)+e^{x} \sin (2 x) \\
& =e^{x}(2 \cos (2 x)+\sin (2 x))
\end{aligned}
$$

$$
\begin{aligned}
& { }^{2} \text { Let } w=2 x \text { then } v=\sin (w) \text { and } \\
& \qquad \begin{aligned}
v^{\prime} & =\frac{d v}{d w} \times \frac{d w}{d x} \\
& =\cos (w) \cdot 2 \\
& =2 \cos (2 x)
\end{aligned}
\end{aligned}
$$

Exercises

1. Use the product rule to differentiate the following
a) $y=(x-2)(6 x+7)$ and simplify as far as possible.
b) $f(x)=\left(2 x^{2}+4\right)\left(x^{5}+4 x^{2}-2\right)$ (do not simplify).
c) $y=(\sqrt{x}-1)\left(x^{2}+1\right)$
d) $y=\left(x^{3}-4 x+\sqrt{x}\right)\left(3 x^{4}+2\right)$.

Answers (Note that answers may be written differently)
a) $12 x-5$
b) $\left(2 x^{2}+4\right)\left(5 x^{4}+8 x\right)+4 x\left(x^{5}+4 x^{2}-2\right)$
c) $\frac{5}{2} x^{3 / 2}-2 x+\frac{1}{2 \sqrt{x}}$
d) $12 x^{3}\left(x^{3}-4 x+\sqrt{x}\right)+\left(3 x^{4}+2\right)\left(3 x^{2}-4+\frac{1}{2 \sqrt{x}}\right)$
2. Find the derivative of
a) $y=e^{x} \tan x$
b) $y=x^{2} \log _{e} x$
c) $y=\sin x \cos x$
d) $y=\frac{e^{x}}{x}$ Hint : $\frac{1}{x}=x^{-1}$.

Answers (Note that answers may be written differently)
a) $e^{x} \tan x+e^{x} \sec ^{2} x$
b) $x+2 x \log _{e} x$
c) $\cos ^{2}(x)-\sin ^{2}(x)$
d) $\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}}=e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$

