D6: The Product Rule

The product rule is used when we want to differentiate the product of two functions. The derivatives of functions such as $y = f(x) = 2x \sin(x)$ and $y = f(x) = xe^x$ can be found using the product rule.

Definition

 \mathbf{If}

y = f(x) $= u(x) \cdot v(x)$

then

$$y' = f'(x)$$

= $u(x) \cdot v'(x) + u'(x) \cdot v(x)$.

This is often abbreviated to

$$y' = uv' + u'v.$$

View short video on the product rule.

Examples

1. Find the derivative of $f(x) = (x+3)^6 (2x-1)$. Solution:

Let $u = (x+3)^6$ and v = 2x - 1, then using the chain rule¹

¹ Let w = x + 3 then $u = w^6$ and $u' = \frac{du}{dw} \times \frac{dw}{dx}$ $= 6w^5 \cdot 1$ $= 6(x+3)^5$.

and

v' = 2.

 $u' = 6(x+3)^5$

Hence, using the product rule,

 $\frac{dy}{dx} = v(x)\frac{d}{dx}u(x) + \frac{d}{dx}v(x)u(x)$

y = v(x)u(x)

$$y' = vu' + v'u$$

$$y' = uv' + u'v$$

= $(x+3)^6 \cdot 2 + 6(x+3)^5(2x-1)$
= $(x+3)^5[2(x+3) + 6(2x-1)]$
= $14x(x+3)^5$.

2. Differentiate $e^x \sin(2x)$. Solution:

Let $u = e^x$ and $v = \sin(2x)$, then

$$u' = e^x$$
$$v' = 2\cos(2x)$$

where we have used the chain rule to evaluate v'.² Hence, using the ² Let w = 2x then $v = \sin(w)$ and product rule,

$$y' = uv' + u'v$$

= $e^x \cdot 2\cos(2x) + e^x \sin(2x)$
= $2e^x \cos(2x) + e^x \sin(2x)$
= $e^x (2\cos(2x) + \sin(2x))$.

Exercises

1. Use the product rule to differentiate the following

a) y = (x - 2) (6x + 7) and simplify as far as possible. b) $f(x) = (2x^2 + 4)(x^5 + 4x^2 - 2)$ (do not simplify). c) $y = (\sqrt{x} - 1)(x^2 + 1)$ d) $y = (x^3 - 4x + \sqrt{x}) (3x^4 + 2)$. Answers (Note that answers may be written differently)

a)
$$12x - 5$$

b) $(2x^2 + 4) (5x^4 + 8x) + 4x (x^5 + 4x^2 - 2)$
c) $\frac{5}{2}x^{3/2} - 2x + \frac{1}{2\sqrt{x}}$
d) $12x^3 (x^3 - 4x + \sqrt{x}) + (3x^4 + 2) (3x^2 - 4 + \frac{1}{2\sqrt{x}})$

2. Find the derivative of
$$a)u = e^x \tan x$$

a)
$$y = e^{t} \tan x$$

b) $y = x^{2} \log_{e} x$
c) $y = \sin x \cos x$
d) $y = \frac{e^{x}}{x}$ Hint : $\frac{1}{x} = x^{-1}$.

Answers (Note that answers may be written differently)

a)
$$e^{x} \tan x + e^{x} \sec^{2} x$$

b) $x + 2x \log_{e} x$
c) $\cos^{2}(x) - \sin^{2}(x)$
d) $\frac{e^{x}}{x} - \frac{e^{x}}{x^{2}} = e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}}\right)$

$$v' = \frac{dv}{dw} \times \frac{dw}{dx}$$
$$= \cos(w) \cdot 2$$
$$= 2\cos(2x).$$