D2 : Gradients, Tangents and Derivatives

Gradient of a Curve

In this module we are concerned with finding a formula for the slope or gradient of the tangent at any point on a given curve $y=f(x)$. The gradient at a point on a curve is defined as the gradient of the tangent to the curve at that point.

The formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ may be used to find the gradient of a line when two points on the line, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are known ${ }^{1}$.

Consider the gradient of the curve defined by $y=f(x)$ at the point P (ie the gradient of the tangent line $A B$).

This gradient cannot be calculated as only one point (the point P) on the line is known. But the point P has coordinates $(x, f(x))$ and the point Q has coordinates $(x+h, f(x+h))$. The gradient of the line $P Q$

${ }^{1}$ There are two special cases that have to be dealt with: horizontal and vertical lines.
A horizontal line parallel to the x-axis with equation of the form $y=k$ where k is a constant, has a gradient of zero. As a line becomes closer to vertical its gradient gets larger. A vertical line parallel to the y-axis with equation of the form $x=c$ where c is a constant has a gradient which is undefined.
can be calculated and this can be used to approximate the gradient of $A B$. The gradient of $P Q=\frac{f(x+h)-f(x)}{h}$. As the value of h decreases (i.e Q becomes closer to the point P), the approximation of the gradient is more accurate. The value of the gradient becomes most accurate as h approaches zero.
The gradient formula for the curve $y=f(x)$ is defined as the derivative function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, h \neq 0 .
$$

The derivative function $f^{\prime}(x)$ gives the slope of the tangent to the curve $f(x)$ at any point x.

Example

The derivative of the function $f(x)=\frac{3}{x}$ is $f^{\prime}(x)=-\frac{3}{x^{2}}$. Find the slope of the tangent to the curve at $x=4$.

Solution

At $x=4$,

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{3}{4^{2}} \\
& =-\frac{3}{16} .
\end{aligned}
$$

Hence the slope of the tangent at $x=4$ is $-\frac{3}{16}$.

Exercises

1. If the derivative function for $f(x)=x^{3}-x$ is $f^{\prime}(x)=3 x^{2}-1$, find the slope of the tangent to this curve at
$\begin{array}{lll}\text { a) } x=2 & \text { b) } x=0 & \text { c) } x=-9 .\end{array}$
Answer: a) $11 \quad$ b) $-1 \quad$ c) $x=242$.
2. If the derivative function of $f(x)=\sin (x)$ is $f^{\prime}(x)=\cos (x)$ find the gradient of $f(x)=\sin (x)$ at
$\begin{array}{lll}\text { a) } x=0 & \text { b) } x=\pi / 2 & \text { c) } x=3.5 .\end{array}$
Answer: a) $1 \quad$ b) $0 \quad$ c) -0.94 .
3. Determine $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$ and hence find the slope of the tangent to the curve $y=x^{2}$ at
$\begin{array}{lll}\text { a) } x=2 & \text { b) } x=0 & \text { c) } x=-9 \text {. }\end{array}$
Answer: $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=2 x$.
$\begin{array}{lll}\text { a) } 4 & \text { b) } x=0 & \text { c) }-18 .\end{array}$
