D13: Partial Differentiation

Let us suppose that we have the equation for a paraboloid with an elliptical cross-section such as $z=x^{2}+4 y^{2}$. In this case we have a function of two independent variables, $z=f(x, y)$, and its graph is a 3-dimensional surface. We need to be able to differentiate z with respect to either x or y. If we treat one of the variables, say y, as a constant, then we can treat z as a function of just one variable, x. We can then calculate the derivative of z with respect to x. This derivative is called the partial derivative of z with respect to x and is denoted by $\frac{\partial z}{\partial x}$. If we treat x as a constant then we can treat z as a function of y and we can then calculate $\frac{\partial z}{\partial y}$ the partial derivative of z with respect to y.

Examples

1) If $z=x^{2}+4 y^{2}$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =2 x+0 \quad[\text { since } y \text { is treated as a constant }] \\
& =2 x \\
\frac{\partial z}{\partial y} & =0+8 y \quad[\text { since } x \text { is treated as a constant }] \\
& =8 y .
\end{aligned}
$$

2) If $f(x, y)=x y+2 y^{2}$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =y+0 \quad \text { [Just as the derivative of } 2 x \text { is } x, \text { the derivative of } x y \text { is } y \\
& =y \\
\frac{\partial f}{\frac{\partial f}{\partial y}} & =x+4 y
\end{aligned}
$$

3) If $f(x, y)=x^{2} y+y^{2} \sin x$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x y+y^{2} \cos x \\
& \frac{\partial f}{\partial y}=x^{2}+2 y \sin x
\end{aligned}
$$

4) If $f(x, y)=x y^{2} \sin (x y)$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}
\end{aligned}=y^{2} \sin (x y)+x y^{2} \times y \cos (x y)[\text { applying the product rule }] ~ 子 \begin{aligned}
\frac{\partial f}{\partial y} & =2 x y \sin (x y)+x y^{2} \times x \cos (x y) \\
& =2 x y \sin (x y)+x^{2} y^{2} \cos (x y)
\end{aligned}
$$

Alternative Notation and Evaluation at a Point

An alternative notation for partial derivatives is f_{x} for $\frac{\partial f}{\partial x}$ and f_{y} for $\frac{\partial f}{\partial y}$.

Partial derivatives may be evaluated at particular points: $f_{x}(2,1)$ refers to the value of the partial derivative of f with respect to x at the point where $x=2$ and $y=1$.

Example

If $f(x, y)=2 x^{3} y+3 y^{2}$ find $f_{y}(1,3)$

$$
\begin{aligned}
f(x, y) & =2 x^{3} y+3 y^{2} \\
\Rightarrow f_{y} & =2 x^{3}+6 y \\
\Rightarrow f_{y}(1,3) & =2+18 \\
& =20 .
\end{aligned}
$$

Higher Order Partial Derivatives

As we have seen, a function $z=f(x, y)$ has two partial derivatives.
They are $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
A function such as this will have four second order partial derivatives:

1. It can be differentiated with respect to x and then with respect to x again $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}$
2. It can be differentiated with respect to y and then with respect to y again $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}$
3. It can be differentiated with respect to x and then with respect to $y \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{x y}$
4. It can be differentiated with respect to y and then with respect to $x \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{y x}$

Example

Find all second order partial derivatives of $f(x, y)=x^{2} y^{3}+2 x \cos y$

$$
\begin{array}{r}
f_{x}=2 x y^{3}+2 \cos y \\
\Rightarrow f_{x x}=2 y^{3} \text { and } f_{x y}=6 x y^{2}-2 \sin y \\
f_{y}=3 x^{2} y-2 x \cos y \\
\Rightarrow f_{y y}=6 x^{2} y-2 x \sin \text { yand } f_{y x}=6 x y^{2}-2 \sin y
\end{array}
$$

(Note that $f_{x y}=f_{y x}$. This will always be the case.)

Exercises

1. Find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for each of the following
a) $z=3 x^{4}+2 y^{3}$
b) $z=x^{2} y$
c) $z=3 x e^{2 y}$
d) $z=\ln \left(x^{3} y^{5}-2\right)$

Answers
a) $\frac{\partial z}{\partial x}=12 x^{3}, \frac{\partial z}{\partial y}=6 y^{2}$
b) $\frac{\partial z}{\partial x}=2 x y, \frac{\partial z}{\partial y}=x^{2}$
c) $\frac{\partial z}{\partial x}=3 e^{2 y}, \frac{\partial z}{\partial y}=6 x e^{2 y}$
d) $\frac{\partial z}{\partial x}=\frac{3 x^{2} y^{5}}{x^{3} y^{5}-2}, \frac{\partial z}{\partial y}=\frac{5 x^{3} y^{4}}{x^{3} y^{5}-2}$
2. Find the value of the indicated partial derivative at the given point
a) $f(x, y)=x^{4}-4 y^{2}$, find $f_{x}(2,3)$
b) $f(x, y)=\ln \left(x^{2}+y^{3}\right)$, find $f_{y}(-1,1)$

Answers
a) 32
b) 1.5
3. Find the first and second order partial derivatives of the following
a) $f(x, y)=x \ln (y)$
b) $f(x, y)=x^{3}+x^{2} y-3 x y^{2}+y^{3}$
c) $f(x, y)=\sin (x y)$
d) $f(x, y)=x \cos y+y e^{x}$

Answers
a) $f_{x}=\ln y, f_{y}=\frac{x}{y}, f_{x x}=0, f_{x y}=-\frac{x}{y^{2}}, f_{x y}=f_{y x}=\frac{1}{y}$
b) $f_{x}=3 x^{2}+2 x y-3 y^{2}, f_{y}=x^{2}-6 x y+3 y^{2}$,
$f_{x x}=6 x+6 y, f_{y y}=-6 x+6 y, f_{x y}=f_{y x}=2 x-6 y$
c) $f_{x}=y \cos (x y), f_{y}=x \cos (x y), f_{x x}=-y^{2} \sin (x y)$,
$f_{y y}=-x^{2} \sin (x y), f_{x y}=f_{y x}=-x y \sin (x y)+\cos (x y)$
d) $f_{x}=\cos y+y e^{x}, f_{y}=x \sin y+e^{x}, f_{x x}=y e^{x}$,
$f_{y y}=-x \cos y, f_{x y}=f_{y x}=e^{x}-\sin y$

