D12: Implicit Differentiation

If we are able to write an equation relating x and y explicitly, that is in the form $y=f(x)$, then we can find the derivative function $y=f^{\prime}(x)$ or $y=\frac{d y}{d x}$ using the rules we have learned so far.

For example, if

$$
y=3 x^{2}-2 x+5
$$

then

$$
\frac{d y}{d x}=6 x-2
$$

But how do we differentiate expressions such as $y^{5}+3 x y+x^{2}-$ $5=0$ or find $\frac{d}{d x}(\sin (x y))$?
In such expressions y is said to be an implicit function of x as we cannot rearrange the expression to the form $y=f(x)$. But we can use implicit differentiation techniques to find $\frac{d y}{d x}$ without having to solve the given equation for y.
Within this process the chain rule must be used whenever the function y is being differentiated because it is assumed that y is an unknown function of x.

The Chain Rule

Consider $\frac{d}{d x}\left(y^{2}\right)$
If $y=\sin (x), \frac{d}{d x}\left(y^{2}\right)$ becomes $\frac{d}{d x}\left([\sin (x)]^{2}\right)$. Applying the chain rule $\frac{d y}{d x}=2 \sin (x) \cdot \cos (x)=2 y \cdot \frac{d y}{d x}$

If $y=(4 x+3), \frac{d}{d x}\left(y^{2}\right)$ becomes $\frac{d}{d x}(4 x+3)^{2}$. Applying the chain rule $\frac{d y}{d x}=2(4 x+3) \cdot 4=2 y \cdot \frac{d y}{d x}$

If $y=e^{x}, \frac{d}{d x}\left(y^{2}\right)$ becomes $\frac{d}{d x}\left(e^{x}\right)^{2}$.
Applying the chain rule $\frac{d y}{d x}=2\left[\left(e^{x}\right)\right] \cdot e^{x}=2 y \cdot \frac{d y}{d x}$
And when y is an unspecified function of $x, \frac{d}{d x}\left(y^{2}\right)=2 y \cdot \frac{d y}{d x}$
More generally, using the chain rule, if $u=f(y)$ then

$$
\begin{equation*}
\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x} . \tag{1}
\end{equation*}
$$

Example 1

Find $\frac{d}{d x}\left(y^{2} x\right)$.

Solution:

Using the product rule first

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2} x\right) & =y^{2} \frac{d}{d x}(x)+x \frac{d}{d x}\left(y^{2}\right) \\
& =y^{2} \cdot 1+x \frac{d}{d y}\left(y^{2}\right) \frac{d y}{d x} \text { using (1) above } \\
& =y^{2}+x \cdot 2 y \frac{d y}{d x} \\
& =y^{2}+2 x y \frac{d y}{d x} .
\end{aligned}
$$

Example 2

Find $\frac{d y}{d x}$ if $y^{3}=2 x y-7 .^{1}$
Solution:

$$
\begin{aligned}
y^{3} & =2 x y-7 \\
3 y^{2} y^{\prime} & =2 x \cdot 1 y^{\prime}+2 \cdot 1 \cdot y-0 \\
3 y^{2} y^{\prime} & =2 x y^{\prime}+2 y \\
3 y^{2} y^{\prime}-2 x y^{\prime} & =2 y \\
\left(3 y^{2}-2 x\right) y^{\prime} & =2 y \\
y^{\prime} & =\frac{2 y}{3 y^{2}-2 x} .
\end{aligned}
$$

Example 3

Find the value of the derivative at the point $(\pi, 0)$ if $\sin (x y)=2 x$.

Solution:

We have

$$
\sin (x y)=2 x .
$$

Using the chain rule on $\sin (x y)$ and the product rule on $x y$ we obtain

$$
\begin{aligned}
\cos (x y) \cdot\left(x y^{\prime}+y\right) & =2 \\
\text { At }(\pi, 0), \cos (\pi \cdot 0) \cdot\left(\pi y^{\prime}+0\right) & =2 \\
(1) \cdot\left(\pi y^{\prime}\right) & =2 \\
\pi y^{\prime} & =2 \\
y^{\prime} & =\frac{2}{\pi} .
\end{aligned}
$$

${ }^{1} \frac{d y}{d x}$ may be abbreviated by y^{\prime}. Sometimes this is helpful in reducing the amount you have to write.
In this example we use (1) on the left hand side and the product rule on the term $2 x y$.

Example 4

Find the equation of the tangent line to the circle $x^{2}+y^{2}=9$ at the point $(2, \sqrt{5})$.

Solution:

Differentiating implicitly, we have

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
y^{\prime} & =\frac{-2 x}{2 y} \\
& =-\frac{x}{y}
\end{aligned}
$$

At the point $(2, \sqrt{5}), y^{\prime}$ and so the gradient m of the tangent is

$$
m=-\frac{2}{\sqrt{5}}
$$

Hence the equation of the tangent is ${ }^{2}$

$$
\begin{aligned}
y-\sqrt{5} & =-\frac{2}{\sqrt{5}}(x-2) \\
y & =-\frac{2}{\sqrt{5}} x+\frac{4}{\sqrt{5}}+\sqrt{5} \\
& =-\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}}(4+5) \\
& =-\frac{2}{\sqrt{5}} x+\frac{9}{\sqrt{5}}
\end{aligned}
$$

Exercises

1. Find $\frac{d}{d x}\left(\frac{x}{y}\right)$. Hint: use quotient rule.

Answer
$\frac{y-x y^{\prime}}{y^{2}}$.
2. Find $\frac{d}{d x}\left(\frac{x+y}{x-y}\right)$.

Answer
$\frac{2 x y^{\prime}}{(x-y)^{2}}$.
3. Find the value of $\frac{d y}{d x}$ at the point $(1,2)$ if $x^{2}+y=7-2 x y$.

Answer
-2 .
4. Find $\frac{d y}{d x}$ if $\mathrm{e}^{x}-\sin (y)=x$.

Answer $\frac{e^{x}-1}{\cos y}$.
5. Find the equation of the tangent line to the circle $x^{2}+y^{2}=4$ at the point $(1, \sqrt{3})$.

Answer
$y=-\frac{1}{\sqrt{3}} x+\frac{4}{\sqrt{3}}$.

