D10: Rates of Change

If there is a relationship between two or more variables, for example, area and radius of a circle $\left(A=\pi r^{2}\right)$, or length of a side and volume of a cube $\left(V=l^{3}\right)$, or days since first case and number of people with an infectious disease then there will also be a relationship between the rates at which the variables change. If y is a function of x, that is $y=f(x)$, then $\frac{d y}{d x}=f^{\prime}(x)$.

We can use differentiation to find the function that defines the rate of change between variables

$$
\begin{aligned}
& \qquad A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r \\
& \text { and } V=l^{3} \Rightarrow \frac{d V}{d l}=3 l^{2}
\end{aligned}
$$

The chain rule can be used to find rates of change with respect to time:

$$
\begin{gathered}
\frac{d y}{d t}=\frac{d y}{d x} \times \frac{d x}{d t} \\
A=\pi r^{2} \Rightarrow \frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t} \\
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{gathered} \begin{array}{r}
\text { and } V=l^{3} \Rightarrow \frac{d V}{d t}=\frac{d V}{d l} \times \frac{d l}{d t} \\
\frac{d V}{d t}=3 l^{2} \frac{d l}{d t}
\end{array}
$$

Examples

1. A balloon has a small hole and its volume V in cubic centimeters after t seconds is $V=66-10 t-0.01 t^{2}, t>0$. Find the rate of change
of volume after 10 seconds.

$$
\begin{aligned}
V & =66-10 t-0.01 t^{2} \\
\frac{d V}{d t} & =-10-0.02 t \\
\text { When } t=10, \frac{d V}{d t} & =-10-0.02(10) \\
& =-10.2 \mathrm{~cm}^{3} / \mathrm{s} .
\end{aligned}
$$

The volume of the balloon is decreasing at a rate of $10.2 \mathrm{~cm}^{3} / \mathrm{s}$. 2. The pressure P, of a given mass of gas kept at constant temperature, and its volume V are connected by the equation $P V=500$. Find $\frac{d P}{d V}$ when $V=20$.

$$
\begin{aligned}
P V=500 \Rightarrow P & =\frac{500}{V} \\
P & =500 V^{-1} \\
\text { Then } \frac{d P}{d V} & =-500 V^{-2} \\
V=20 \Rightarrow \frac{d P}{d V} & =-500(20)^{-2} \\
& =-1.25 .
\end{aligned}
$$

The rate of change of pressure with respect to volume is -1.25 . 3. A ladder 4.5 m long ladder is sliding down a vertical wall with the top descending at a rate of $2.3 \mathrm{~m} / \mathrm{s}$. How fast is the bottom of the ladder moving along the ground when the bottom is 3 meters from the wall?

A diagram reveals that the information in the question is described by Pythagoras's theorem: ${ }^{1}$

${ }^{1}$ Pythagoras's theorem: $a^{2}+b^{2}=c^{2}$ where c is the hypotenuse and a and b the shorter sides of a right triangle.
tance of the bottom of the ladder from the wall then

$$
\begin{aligned}
x^{2}+y^{2} & =4.5^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t} & =0 \quad[\text { differentiating implicitly }] \\
2 \times 3 \times \frac{d x}{d t}+2 \times 3.35 \times(-2.3) & =0 \quad[a=3, c=4.5 \Rightarrow b=3.35] \\
6 \frac{d x}{d t}-15.41 & =0 \\
\Rightarrow \frac{d x}{d t} & =2.57
\end{aligned}
$$

The ladder is moving along the ground at a speed of $2.57 \mathrm{~m} / \mathrm{s}$.

Exercise

1. The radius of a spherical balloon is increasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. At what rate is the volume increasing when the radius is 5 cm ?
Answer: $300 \pi \approx 942 \mathrm{~cm}^{3} / \mathrm{min}$
2. If the displacement of an object from a starting point is given by $s(t)=\sin (t)-2 \cos (t)$ find the velocity when $t=1$. Hint: $v(t)=s^{\prime}(t)=\frac{d s}{d t}$
Answer: 2.22
3. The function $n(t)=200 t-100 \sqrt{t}$ describes the spread of a virus where t is the number of days since the initial infection and n is the number of people infected. Find the rate at which n is increasing at the instant when $t=4$.
Answer: 175 people per day.
4. If $y=\left(x-\frac{1}{x}\right)^{2}$ find $\frac{d x}{d t}$ when $x=2$, given $\frac{d y}{d t}=1$.

Answer:4/15
5. A hollow right circular cone is held vertex downwards beneath a tap leaking at the rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of rise of water level when the depth is 6 cm given that the height of the cone is 18 cm and its radius is 12 cm . (Hint: Use the properties of similar triangles to find a relationship between radius and height.)

Answer: $\frac{1}{8 \pi} \mathrm{~cm} / \mathrm{s} \approx 0.04 \mathrm{~cm} / \mathrm{s}$

