IN8 Integration by Parts

Integration by parts is a technique for integrating the product of two functions. For example:

$$
\int x \cos (x) d x
$$

where the functions are x and $\cos (x)$ or

$$
\int x^{3} \ln (x) d x
$$

where the functions are x^{3} and $\ln (x)$. This module gives some information on using this technique.

Formula

The integration by parts formula is obtained from the product rule for differentiation. For any two differential functions $v(x)$ and $u(x)$ we have, by the product rule,

$$
\frac{d}{d x}(v(x) u(x))=v(x) \frac{d u(x)}{d x}+u(x) \frac{d v(x)}{d x}
$$

Integrating both sides with respect to x gives

$$
\begin{aligned}
\int \frac{d}{d x}(v(x) u(x)) d x & =\int\left(v(x) \frac{d u(x)}{d x}+u(x) \frac{d v(x)}{d x}\right) d x, \text { that is, } \\
v(x) u(x) & =\int v(x) \frac{d u(x)}{d x} d x+\int u(x) \frac{d v(x)}{d x} d x .
\end{aligned}
$$

This can be rearranged to give the formula for integration by parts:

$$
\int v(x) \frac{d u(x)}{d x} d x=v(x) u(x)-\int u(x) \frac{d v(x)}{d x} d x
$$

Which is often abbreviated to

$$
\int v u^{\prime} d x=v u-\int u v^{\prime} d x
$$

The hope is that by choosing the functions v and u^{\prime} carefully, the integral on the right hand side is easier than the original integral.

Successful use of integration by parts requires a correct choice for v and u^{\prime}. If the integral on the right is harder, then try swapping v and u^{\prime}.

To assist you in choosing v and u^{\prime} choose v to be the function that comes first in the sequence of functions:

1. logarithmic function
2. inverse trig function
3. algebraic function
4. trigonometric function
5. exponential function
u^{\prime} is then the other function in the integrand. ${ }^{1}$.

Example 1: Find $\int x \cos (x) d x$.
Here we have an algebraic function x and a trigonometric function $\cos (x)$. Since algebraic functions are higher on the list than trigonometric functions, we let $v=x$ and so $u^{\prime}=d u / d x=\cos (x)$. Then $v^{\prime}=d v / d x=1$ and $u=\sin (x)$. Using the formula we have ${ }^{2}$:

$$
\begin{aligned}
\int x \cos (x) d x & =v u-\int u v^{\prime} d x \\
& =x \sin (x)-\int(\sin (x)) \cdot 1 d x \\
& =x \sin (x)+\cos (x)+c, c \text { a constant. }
\end{aligned}
$$

Note that if we chose the functions as $v=\cos (x)$ and $u^{\prime}=x$, then $v^{\prime}=-\sin (x)$ and $u=\frac{1}{2} x^{2}$. Substituting in the formula will give:

$$
\begin{aligned}
\int x \cos (x) d x & =v u-\int u v^{\prime} d x \\
& =-\frac{1}{2} x^{2} \sin (x)-\int-\frac{1}{2} x^{2} \sin (x) d x .
\end{aligned}
$$

The integral on the right is harder than the one we began with and we make no progress. If this happens to you, change the selection.

Example 2: Find $\int x^{3} \ln (x) d x$.
Here we have an algebraic function x^{3} and a logarithmic function $\ln (x)$. Since logarithmic functions are higher on the list than algebraic functions, we let $v=\ln (x)$ and so $u^{\prime}=d u / d x=x^{3}$. Then $v^{\prime}=d v / d x=1 / x$ and $u=\frac{1}{4} x^{4}$. Using the formula ${ }^{3}$ we have
${ }^{1}$ The integrand is the function that is being integrated. For example the integrand in

$$
\int x \sin (x) d x
$$

is $x \sin (x)$. In this case it is the product of an algebraic function x and a trigonometric function $\sin (x)$ so we would set $v=x$, (because algebraic functions are higher on the list than trigonometric functions), and $u^{\prime}=\sin (x)$.
${ }^{2}$ We use

$$
\int v u^{\prime} d x=v u-\int u v^{\prime} d x
$$

and the fact that $\sin (x)=\sin (x) \times 1$.
${ }^{3}$ We use

$$
\int v u^{\prime} d x=v u-\int u v^{\prime} d x
$$

$$
\begin{aligned}
\int x^{3} \ln (x) d x & =v u-\int u v^{\prime} d x \\
& =\ln (x)\left(\frac{1}{4} x^{4}\right)-\int \frac{1}{4} x^{4}\left(\frac{1}{x}\right) d x \\
& =\frac{1}{4} x^{4} \ln (x)-\frac{1}{4} \int x^{3} d x \\
& =\frac{1}{4} x^{4} \ln (x)-\frac{1}{4}\left(\frac{1}{4} x^{4}\right)+c, c \text { a constant } \\
& =\frac{x^{4} \ln (x)}{4}-\frac{x^{4}}{16}+c
\end{aligned}
$$

Example 3: Find $\int \sin ^{-1}(x) d x$.
We apparently have only one function $\sin ^{-1}(x)$. The trick here is to note that the integrand ${ }^{4}$ can always be multiplied by 1 without change. So instead of seeing $\int \sin ^{-1}(x) d x$. We see $\int \sin ^{-1}(x) \times 1 d x$. We can view 1 as the constant value function ${ }^{5}$. The constant value function is algebraic, $\left(1=x^{0}\right)$ and below an inverse trigonometric function like $\sin ^{-1}(x)$ on the list above. So we set $v=\sin ^{-1}(x)$ and $d u / d x=1$, then $d v / d x=1 / \sqrt{1-x^{2}}$ and $u=x$. Substituting in the formula ${ }^{6}$ we get :

$$
\begin{align*}
\int \sin ^{-1}(x) d x & =v u-\int u v^{\prime} d x \\
& =x \sin ^{-1}(x)-\int \frac{x}{\sqrt{1-x^{2}}} d x \tag{1}
\end{align*}
$$

The integral on the right hand side can be evaluated with the substitution $w=1-x^{2}$ then $d w / d x=-2 x$ and $x=-\frac{1}{2} \frac{d w}{d x}$, using the substitution rule ${ }^{7}$ we get

$$
\begin{aligned}
\int \frac{x}{\sqrt{1-x^{2}}} d x & =\int-\frac{1}{2} \frac{d w}{d x} \frac{1}{\sqrt{w}} d x \\
& =-\frac{1}{2} \int w^{-1 / 2} d w \\
& =-\frac{1}{2}(2) w^{1 / 2}+c, c \in \mathbb{R} \\
& =-\left(1-x^{2}\right)^{1 / 2}+c \\
& =-\sqrt{1-x^{2}}+c
\end{aligned}
$$

Substituting this result in equation (1) we get the final result

$$
\begin{aligned}
\int \sin ^{-1}(x) d x & =v u-\int u v^{\prime} d x \\
& =x \sin ^{-1}(x)-\int \frac{x}{\sqrt{1-x^{2}}} d x . \\
& =x \sin ^{-1}(x)+\sqrt{1-x^{2}}+c .
\end{aligned}
$$

${ }^{4}$ The integrand is the function that is integrated. In this case it is $\sin ^{-1}(x)$ which is the same as $\sin ^{-1}(x) \times 1$.
${ }^{5}$ The constant value function 1 is just a function that gives the value 1 regardless of its argument. That is $1(x)=1$ for all $x \in \mathbb{R}$.
${ }^{6}$ We use

$$
\int v u^{\prime} d x=v u-\int u v^{\prime} d x
$$

${ }^{7}$ The substitution rule states

$$
\int f(g(x)) \frac{d g}{d x} d x=\int f(w) d w
$$

where $w=g(x)$.

Repeated Use of Integration by Parts

Some integrals require the use of the integration by parts technique more than once. For example, consider $\int x^{2} e^{x} d x$. We have an algebraic function x^{2} multiplying an exponential function e^{x}. According to our guide we set $v(x)=x^{2}$ and $u^{\prime}(x)=e^{x}$. Then $d v / d x=2 x$ and $u(x)=e^{x}$. Substituting in the integration by parts formula ${ }^{8}$ we get:

$$
\begin{equation*}
\int x^{2} e^{x} d x=x^{2} e^{x}-\int e^{x}(2 x) d x . \tag{2}
\end{equation*}
$$

The integral on the right hand side requires another integration by parts. We set $v(x)=2 x$ and $u^{\prime}(x)=e^{x}$. Then $d v / d x=2$ and $u(x)=e^{x}$. Substituting in the integration by parts formula gives

$$
\begin{align*}
\int e^{x}(2 x) d x & =2 x e^{x}-\int 2 e^{x} d x \\
& =2 x e^{x}-2 e^{x}+c, c \in \mathbb{R} . \tag{3}
\end{align*}
$$

Now substitute this result in equation (2) to get the result

$$
\begin{aligned}
\int x^{2} e^{x} d x & =x^{2} e^{x}-\int e^{x}(2 x) d x \\
& =x^{2} e^{x}-\left(2 x e^{x}-2 e^{x}+c\right) \text { using (3) } \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}-c \\
& =e^{x}\left(x^{2}-2 x+2\right)-c
\end{aligned}
$$

Note that it doesn't matter if we put c or $-c$ as c is just any constant.

Exercises

1. Find:
a) $\int x \sin (x) d x$
b) $\int x e^{x} d x$
c) $\int x \cos (4 x) d x$
d) $\int x^{4} \ln (x) d x$
2. Find:
a) $\int x^{2} \cos (x) d x$
b) $\int x^{3} e^{x^{2}}$ (Hint: let $\left.v=x^{2}\right)$

Answers

1. a) $-x \cos (x)+\sin (x)+c$
b) $x e^{x}-e^{x}+c$
c) $\frac{1}{4} x \sin (4 x)+\frac{1}{16} \cos (4 x)+c$
d) $\frac{x^{5}}{5} \ln (x)-\frac{x^{5}}{25}+c$
2. a) $x^{2} \sin (x)+2 x \cos (x)-2 \sin (x)+c$
b) $x^{2} e^{x^{2}}-e^{x^{2}}+c$
