IN4 DEFINITE INTEGRALS

$\int_{a}^{b} f(x) d x$ is called the definite integral from $\mathrm{x}=a$ to $\mathrm{x}=b$ where a is the lower limit of integration and b is the upper limit of integration.
$\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)$ where $F(x)=\int f(x) d x$

This can be calculated only if $f(x)$ is defined for all x in the interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

Examples

1. $\int_{2}^{4}(x+1) d x=\left[\frac{x^{2}}{2}+x\right]_{2}^{4}$

$$
\begin{aligned}
& =\left[\frac{4^{2}}{2}+4\right]-\left[\frac{2^{2}}{2}+2\right] \\
& =8
\end{aligned}
$$

2. $\int_{0}^{\pi}\left(\cos x+e^{-2 x}\right) d x=\left[\sin x-\frac{e^{-2 x}}{2}\right]_{0}^{\pi}$

$$
\begin{aligned}
& =\left[\sin \pi-\frac{e^{-2 \pi}}{2}\right]-\left[\sin 0-\frac{e^{-2(0)}}{2}\right] \\
& =\left[0-\frac{e^{-2 \pi}}{2}\right]-\left[0-\frac{1}{2}\right] \\
& =\frac{1-e^{-2 \pi}}{2}
\end{aligned}
$$

3. If the work done (measured in joules) in moving an object from point a to point b is given by $W=\int_{a}^{b}\left(3 x^{2}+2\right) d x$ find the work done in moving the object from the point $x=0$ to the point $x=3$.

$$
\begin{aligned}
\int_{0}^{3}\left(3 x^{2}+2\right) d x & =\left[\frac{3 x^{3}}{3}+2 x\right]_{0}^{3} \\
& =\left[\frac{3(3)^{3}}{3}+2(3)\right]-\left[\frac{3(0)^{3}}{3}+2(0)\right] \\
& =\left(3^{3}+6\right)-(0) \\
& =33 \text { joules }
\end{aligned}
$$

Exercises

1. Evaluate exactly:
(a) $\int_{0}^{2}\left(3 x^{2}+x+1\right) d x$
(b) $\int_{0}^{\pi}(\cos x+\sin 2 x) d x$
(c) $\int_{-2}^{4} 2 e^{-3 x} d x$
2. The acceleration of a particle is given by $a(t)=2 t^{2}+3 e^{-t} m / s^{2}$. If its initial velocity, $v(0)$, is $2 \mathrm{~m} / \mathrm{s}$ find the velocity when $\mathrm{t}=3$. [NB: acceleration $\mathrm{a}(\mathrm{t})=\mathrm{v}^{\prime}(\mathrm{t})$]

Answers

1(a) 12
(b) 0
(c) $\frac{2 e^{6}}{3}-\frac{2 e^{-12}}{3}$
2. $22.88 \mathrm{~m} / \mathrm{s}$

