CN3 DE MOIVRE'S THEOREM

Integral Powers of Complex Numbers

De Moivre's theorem states that:

$$
\begin{aligned}
\text { If } \quad z & =r \operatorname{cis} \theta \\
\text { then } \quad z^{n} & =r^{n} \operatorname{cis}(n \theta)
\end{aligned}
$$

Examples: 1. Express $(1-i)^{6}$ in the form $x+y i$

$$
\begin{aligned}
(1-\mathrm{i})^{6} & =\left[\sqrt{2} \operatorname{cis}\left(\frac{-\pi}{4}\right)\right]^{6} \quad \text { change to polar form } \\
& =(\sqrt{2})^{6}\left[c i s\left(6 \times \frac{-\pi}{4}\right)\right]^{6} \text { by DeMoivre's theorem } \\
& =8 c i s\left(\frac{-3 \pi}{2}\right) \\
& =8 i
\end{aligned}
$$

2. Simplify $\frac{(\sqrt{3}-i)^{6}}{(1+i)^{8}}$ and give the answer in rectangular form

$$
\begin{array}{ll}
\sqrt{3}-i=2 \operatorname{cis}\left(-\frac{\pi}{6}\right) & \text { change to polar form } \\
(\sqrt{3}-i)^{6}=64 \operatorname{cis}(-\pi) & \text { by DeMoivre's theorem }
\end{array}
$$

$$
\text { and } \begin{array}{rlr}
1+\mathrm{i}=\sqrt{2} \operatorname{cis} \frac{\pi}{4} & \text { change to polar form } \\
(1+\mathrm{i})^{8} & =16 \operatorname{cis} 2 \pi & \text { by De Moivre's theorem }
\end{array}
$$

$$
\therefore \frac{(\sqrt{3}-i)^{6}}{(1+i)^{8}}=\frac{64 \operatorname{cis}(-\pi)}{16 \operatorname{cis} 2 \pi}
$$

$$
=\frac{64}{16} \operatorname{cis}(-\pi-2 \pi)
$$

$$
=4 \operatorname{cis}(-3 \pi)
$$

$$
=-4
$$

See Exercise 1

Roots of a Complex Number

$z^{n}=r c i s \theta$ will have n solutions of the form

$$
z^{\frac{1}{n}}=r^{\frac{1}{n}} c i s\left(\frac{\theta+2 \pi k}{n}\right), k=0,1, \ldots . . n-1
$$

Example: Solve $z^{4}=1-\sqrt{3} i$

$$
1-\sqrt{3} i=2 \operatorname{cis}\left(-\frac{\pi}{3}\right) \quad[\text { change to polar form }]
$$

then $z^{4}=2 \operatorname{cis}\left(-\frac{\pi}{3}\right), 2 \operatorname{cis}\left(-\frac{\pi}{3}+2 \pi\right), 2 \operatorname{cis}\left(-\frac{\pi}{3}+4 \pi\right), 2 \operatorname{cis}\left(-\frac{\pi}{3}+6 \pi\right)$
[as four solutions are required]

$$
\begin{aligned}
& \text { ie } \quad z^{4}=2 \operatorname{cis}\left(-\frac{\pi}{3}\right), 2 \operatorname{cis}\left(\frac{5 \pi}{3}\right), 2 \operatorname{cis}\left(\frac{11 \pi}{3}\right), 2 \operatorname{cis}\left(\frac{17 \pi}{3}\right) \\
& \therefore \quad z=2^{\frac{1}{4}} \operatorname{cis}\left(-\frac{\pi}{12}\right), 2^{\frac{1}{4}} \operatorname{cis}\left(\frac{5 \pi}{12}\right), 2^{\frac{1}{4}} \operatorname{cis}\left(\frac{11 \pi}{12}\right), 2^{\frac{1}{4}} \operatorname{cis}\left(\frac{17 \pi}{12}\right)
\end{aligned}
$$

The solutions may be represented graphically:

NB: The solutions of $z^{n}=r c i s \theta$ lie on a circle with centre the origin and radius $r^{\frac{1}{n}}$ and they divide the circle into arcs of equal length. The symmetrical nature of the solutions can be used to find all solutions if one is known.

See Exercise 2

Exercises

Exercise 1

1. Evaluate giving your answers in polar form with $-\pi \leq \theta \leq \pi$
(a) $(\sqrt{3}+i)^{3}$
(b) $(1-i)^{5}$
(c) $(-2 \sqrt{3}+2 i)^{2}$
2. Simplify each of the following giving the answer in polar form
(a) $(1+i)^{4}(2-2 i)^{3}$
(b) $\frac{(2-2 \sqrt{3} i)^{4}}{(-1+i)^{6}}$

Exercise 2

1. Solve giving the answers in polar form with $-\pi \leq \theta \leq \pi$
(a) $z^{3}=-1$
(b) $z^{4}=16 i$
(c) $z^{3}=\sqrt{6}-\sqrt{2} i$
2. If $\sqrt{3}+i$ is one solution of $z^{3}=8 i$ use a diagram to find the other solutions in rectangular form.

Answers

Exercise 1

1. (a) 8 cis $\frac{\pi}{2}$
(b) $2^{\frac{5}{2}} \operatorname{cis} \frac{3 \pi}{4}$
(c) $16 \mathrm{cis} \frac{-\pi}{3}$
2. (a) $2^{\frac{13}{2}} \operatorname{cis}\left(\frac{\pi}{4}\right)$
(b) $32 \operatorname{cis}\left(\frac{\pi}{6}\right)$

Exercise 2

1. (a) $\operatorname{cis}\left(\frac{\pi}{3}\right), \operatorname{cis}(\pi), \operatorname{cis}\left(\frac{-\pi}{3}\right)$
(b) $2 \operatorname{cis}\left(\frac{\pi}{8}\right), 2 \operatorname{cis}\left(\frac{5 \pi}{8}\right), 2 \operatorname{cis}\left(\frac{-7 \pi}{8}\right), 2 \operatorname{cis}\left(\frac{-3 \pi}{8}\right)$
(c) $\sqrt{2}$ cis $\left(-\frac{\pi}{18}\right), \sqrt{2}$ cis $\left(\frac{11 \pi}{18}\right), \sqrt{2}$ cis $\left(\frac{-13 \pi}{18}\right)$
2. $-\sqrt{3}+i$ and -2 i
