

CN2 POLAR FORM OF A COMPLEX NUMBER

Rectangular and Polar Form

When a complex number is expressed in the form $\mathbf{z} = \mathbf{x} + \mathbf{y}\mathbf{i}$ it is said to be in *rectangular form*. But a point P with Cartesian coordinates (\mathbf{x}, \mathbf{y}) can also be represented by the polar coordinates (\mathbf{r}, θ) where r is the distance of the point P from the origin and θ is the angle that \overrightarrow{OP} makes with the positive x-axis

NB: $x = rcos\theta$ and $y = rsin\theta$ and $x^2 + y^2 = r^2$ or $r = \sqrt{x^2 + y^2}$

To express a complex number z in polar form:

$$z = x + yi$$

= $r\cos\theta + r\sin\theta i$
= $r(\cos\theta + \sin\theta i)$
which we abbreviate to $z = r\cos\theta$

So, the polar form of the complex number z is

$$z = r \operatorname{cis} \theta$$

where
$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \tan^{-1} \left(\frac{y}{x} \right)$

Modulus and argument of z

The *modulus* of z, |z| is the distance of the point z from the origin.

$$\text{mod } z = |z| = |x + yi| = \sqrt{x^2 + y^2} = r$$

The *argument* of z, arg z, is the angle measured from the positive direction of the x-axis to \overrightarrow{OP}

If
$$\arg z = \theta$$
 then $\sin \theta = \frac{y}{|z|}$ and $\cos \theta = \frac{x}{|z|}$ and $\tan \theta = \frac{y}{x}$

An infinite number of arguments of z exist, for example, if z = i then $\arg z = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$.

argument and Argument of z

We define the Argument of z: $\operatorname{Arg} z = \theta$, where $-\pi \le \theta \le \pi$

So while the argument (with a small "a") of z has many values, the Argument (with a capital "A") of z has only one value.

Examples

1. Express in polar form z = 1 - i

$$x = 1$$
, $y = -1$ [NB: z is in the 4th quadrant]
 $r = |z| = \sqrt{x^2 + y^2} = \sqrt{1 + 1} = \sqrt{2}$
 $\tan \theta = \frac{y}{x} = \frac{-1}{1} = -1$
 $\theta = \tan^{-1}(-1) = \frac{-\pi}{4}$ [since z is in the 4th quadrant]
 $\therefore z = rcis\theta$
 $= \sqrt{2} \operatorname{cis}\left(\frac{-\pi}{4}\right)$

2. Express
$$2 \operatorname{cis}\left(\frac{4\pi}{3}\right)$$
 in the form $x + yi$

$$2 \operatorname{cis}\left(\frac{4\pi}{3}\right) = 2 \left[\cos\left(\frac{4\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right)i\right]$$

$$= 2 \times \left(-\frac{1}{2}\right) + 2 \times \left(-\frac{\sqrt{3}}{2}\right)i$$

$$= -1 - \sqrt{3}i$$

See Exercise 1

Operations on Complex Numbers in Polar Form

Addition and Subtraction

Complex numbers in polar form are best converted to the form x + yi before addition or subtraction

Multiplication and Division

If $z_1 = r_1 cis\theta_1$ and $z_2 = r_2 cis\theta_2$ then it can be shown using trigonometric identities that

$$z_1 \ z_2 = r_1 r_2 cis(\theta_1 + \theta_2)$$
 and $\frac{z_1}{z_2} = \frac{r_1}{r_2} cis(\theta_1 - \theta_2)$

Examples:

1. If
$$z_1 = 2cis\frac{\pi}{4}$$
 and $z_2 = -3cis\frac{5\pi}{6}$ find z_1 z_2 in polar form, $-\pi \le \theta \le \pi$

$$z_1 z_2 = 2cis\frac{\pi}{4} \times \left(-3cis\frac{5\pi}{6}\right)$$

$$= -6cis\left(\frac{\pi}{4} + \frac{5\pi}{6}\right)$$

$$= -6cis\left(\frac{13\pi}{12}\right)$$

$$= -6cis\left(\frac{-11\pi}{12}\right) \quad \text{since } -\pi \le \theta \le \pi$$

2. If
$$u = 1 + 3i$$
 and $v = 2 - i$ find $\frac{u}{v}$ in polar form with $-\pi \le \theta \le \pi$

There are two possible approaches to this problem

$$\begin{array}{lll} u = 1 + 3i & \text{ie. } x = 1, y = 3 \\ r = \sqrt{1^2 + 3^2} = \sqrt{10} & \frac{u}{v} = \frac{1 + 3i}{2 - i} \\ \theta = \tan^{-1} \left(\frac{3}{1}\right) = 1.25 \text{ radians} & = \frac{1 + 3i}{2 - i} \times \frac{2 + i}{2 + i} \\ \therefore & u = \sqrt{10} \text{ cis } 1.25, & = \frac{-1 + 7i}{4 + 1} \\ v = 2 - i & \text{ie } x = 2, y = -1 \\ r = \sqrt{2^2 + (-1)^2} = \sqrt{5} & = -\frac{1}{5} + \frac{7}{5}i \\ \theta = \tan^{-1} \left(\frac{-1}{2}\right) = -0.46 & \therefore & x = -\frac{1}{5}, & y = \frac{7}{5} \\ \therefore & x = -\frac{1}{5}, & y = \frac{7}{5} \\ \text{Then } \frac{u}{v} = \frac{\sqrt{10} \text{ cis } 1.25}{\sqrt{5} \text{ cis } (-0.46)} & \tan \theta = \frac{1.4}{-0.2} = -7, & \theta = 1.71 \text{ radians} \\ = \sqrt{2} \text{ cis } 1.71 & \vdots & \frac{u}{v} = \sqrt{2} \text{ cis } (1.71) \end{array}$$

See Exercise 2

Exercise 1

1. Find the polar form (in radians) of the following complex numbers:

(a)
$$z = -1 + i$$

(b)
$$z = -\sqrt{3} + i$$

(c)
$$z = -3i$$

(d)
$$z = -2 - 4i$$

2. Express each of the following complex numbers in rectangular form

(a)
$$3 \operatorname{cis} \frac{\pi}{4}$$

(b)
$$\sqrt{7}cis\pi$$

(c)
$$8 \operatorname{cis} \frac{\pi}{2}$$

- 3. If z = 2 + i and w = 1 4i find each of the following in polar form using radians where appropriate:
 - (a) |z|

- (b) |w| (c) Arg z (d) |w|
- (e) Arg(zw)
- (f) zw

Exercise 2

1. Simplify

(a)
$$4cis\frac{\pi}{3} \times 3cis\frac{\pi}{4}$$
 (b) $\frac{3cis\frac{5\pi}{6}}{12cis\frac{\pi}{6}}$

(b)
$$\frac{3cis\frac{5\pi}{6}}{12cis\frac{\pi}{6}}$$

- 2. If $u = 6 \operatorname{cis} \frac{3\pi}{4}$ and $v = 4 \operatorname{cis} \left(-\frac{\pi}{4}\right)$ express $\frac{u}{v}$ in polar form
- 3. If $z = 1 \sqrt{3}i$, find z and express both z and z in polar form using radians.

Answers Exercise 1

1. (a)
$$\sqrt{2}cis \frac{3\pi}{4}$$
 (b) $2cis \frac{5\pi}{6}$ (c) $3cis \frac{-\pi}{2}$

(b)
$$2cis \frac{5\pi}{6}$$

(c)
$$3cis \frac{-\pi}{2}$$

(d)
$$\sqrt{20}cis(-2.03)$$

2. (a)
$$\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}$$
 i (b) $-\sqrt{7}$
3. (a) $\sqrt{5}$ (b) $\sqrt{17}$
(e) -0.86 (f) 9.22cis(-0.86)

(b)
$$-\sqrt{7}$$

3. (a)
$$\sqrt{5}$$

(b)
$$\sqrt{17}$$

(d)
$$\sqrt{17}$$

Exercise 2

1. (a)
$$12 \operatorname{cis} \frac{7\pi}{12}$$
 (b) $\frac{1}{4} \operatorname{cis} \frac{2\pi}{3}$

(b)
$$\frac{1}{4} \operatorname{cis} \frac{2\pi}{3}$$

2. (a)
$$\frac{3}{2}cis\pi$$

3.
$$z = 2cis\left(-\frac{\pi}{3}\right)$$
 $\overline{z} = 2cis\left(\frac{\pi}{3}\right)$