STUDY TIPS

CN2 POLAR FORM OF A COMPLEX NUMBER

Rectangular and Polar Form

When a complex number is expressed in the form $z=x+y i$ it is said to be in rectangular form.
But a point P with Cartesian coordinates (x, y) can also be represented by the polar coordinates (r, θ) where r is the distance of the point P from the origin and θ is the angle that $\overrightarrow{O P}$ makes with the positive x -axis

NB: $x=r \cos \theta$ and $y=r \sin \theta$ and $x^{2}+y^{2}=r^{2}$ or $r=\sqrt{x^{2}+y^{2}}$

To express a complex number z in polar form:

$$
\begin{aligned}
\mathrm{z} & =\mathrm{x}+\mathrm{yi} \\
& =\mathrm{r} \cos \theta+\mathrm{r} \sin \theta i \\
& =\mathrm{r}(\cos \theta+\sin \theta i)
\end{aligned}
$$

which we abbreviate to $\mathrm{z}=\mathrm{rcis} \theta$

So, the polar form of the complex number z is

$$
z=r \operatorname{cis} \theta
$$

$$
\text { where } \mathrm{r}=\sqrt{x^{2}+y^{2}} \text { and } \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Modulus and argument of z

The modulus of $\mathrm{z},|z|$ is the distance of the point z from the origin.

$$
\bmod \mathrm{z}=|z|=|x+y i|=\sqrt{x^{2}+y^{2}}=\mathrm{r}
$$

The argument of $\mathrm{z}, \arg \mathrm{z}$, is the angle measured from the positive direction of the x -axis to $\overrightarrow{O P}$
If $\arg \mathrm{z}=\theta$ then $\sin \theta=\frac{y}{|z|}$ and $\cos \theta=\frac{x}{|z|} \quad$ and $\tan \theta=\frac{y}{x}$
An infinite number of arguments of z exist, for example, if $\mathrm{z}=i$ then $\arg \mathrm{z}=\frac{\pi}{2}+2 \pi n, n \in Z$.

argument and Argument of z

We define the Argument of $\mathrm{z}: \operatorname{Arg} \mathrm{z}=\theta$, where $-\pi \leq \theta \leq \pi$
So while the argument (with a small "a") of z has many values, the Argument (with a capital "A") of z has only one value.

Examples

1. Express in polar form $z=1-i$

$$
\begin{aligned}
& \left.\mathrm{x}=1, \mathrm{y}=-1 \quad \text { [NB: } \mathrm{z} \text { is in the } 4^{\text {th }} \text { quadrant }\right] \\
& \mathrm{r}=|z|=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2} \\
& \tan \theta=\frac{y}{x}=\frac{-1}{1}=-1 \\
& \left.\theta=\tan ^{-1}(-1)=\frac{-\pi}{4} \quad \text { [since } \mathrm{z} \text { is in the } 4^{\text {th }} \text { quadrant }\right] \\
& \therefore z=\operatorname{rcis} \theta \\
& \quad=\sqrt{2} \operatorname{cis}\left(\frac{-\pi}{4}\right)
\end{aligned}
$$

2. Express 2 cis $\left(\frac{4 \pi}{3}\right)$ in the form $x+y i$

$$
\begin{aligned}
2 \operatorname{cis}\left(\frac{4 \pi}{3}\right) & =2\left[\cos \left(\frac{4 \pi}{3}\right)+\sin \left(\frac{4 \pi}{3}\right) i\right] \\
& =2 \times\left(-\frac{1}{2}\right)+2 \times\left(-\frac{\sqrt{3}}{2}\right) \mathrm{i} \\
& =-1-\sqrt{3} \mathrm{i}
\end{aligned}
$$

See Exercise 1

Addition and Subtraction

Complex numbers in polar form are best converted to the form $\mathrm{x}+\mathrm{yi}$ before addition or subtraction Multiplication and Division

If $z_{1}=r_{1} c i s \theta_{1}$ and $z_{2}=r_{2} c i s \theta_{2}$ then it can be shown using trigonometric identities that

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right) \quad \text { and } \quad \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
$$

Examples:

1. If $z_{1}=2$ cis $\frac{\pi}{4}$ and $z_{2}=-3$ cis $\frac{5 \pi}{6}$ find $z_{1} z_{2}$ in polar form, $-\pi \leq \theta \leq \pi$

$$
\begin{aligned}
z_{1} z_{2} & =2 \operatorname{cis} \frac{\pi}{4} \times\left(-3 \operatorname{cis} \frac{5 \pi}{6}\right) \\
& =-6 \operatorname{cis}\left(\frac{\pi}{4}+\frac{5 \pi}{6}\right) \\
& =-6 \operatorname{cis}\left(\frac{13 \pi}{12}\right) \\
& =-6 \operatorname{cis}\left(\frac{-11 \pi}{12}\right) \quad \text { since }-\pi \leq \theta \leq \pi
\end{aligned}
$$

2. If $u=1+3 i$ and $v=2-i$ find $\frac{u}{v}$ in polar form with $-\pi \leq \theta \leq \pi$

There are two possible approaches to this problem

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{u}=1+3 \mathrm{i} \quad \text { ie. } \mathrm{x}=1, \mathrm{y}=3 \\
\mathrm{r}
\end{array}=\sqrt{1^{2}+3^{2}}=\sqrt{10} \\
& \theta=\tan ^{-1}\left(\frac{3}{1}\right)=1.25 \text { radians } \\
& \therefore \quad \mathrm{u}=\sqrt{10} \text { cis } 1.25, \\
& \mathrm{v}=2-\mathrm{i} \quad \text { ie } \mathrm{x}=2, \mathrm{y}=-1 \\
& \mathrm{r}
\end{aligned}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} .
$$

OR

$$
\begin{aligned}
\frac{u}{v} & =\frac{1+3 i}{2-i} \\
& =\frac{1+3 i}{2-i} \times \frac{2+i}{2+i} \\
& =\frac{-1+7 i}{4+1} \\
& =\frac{-1+7 i}{5} \\
& =-\frac{1}{5}+\frac{7}{5} i \\
\therefore \mathrm{x} & =-\frac{1}{5}, \quad \mathrm{y}=\frac{7}{5} \\
\mathrm{r} & =\sqrt{x^{2}+y^{2}}=\sqrt{(-0.2)^{2}+1.4^{2}}=\sqrt{2}
\end{aligned}
$$

See Exercise 2

Exercise 1

1. Find the polar form (in radians) of the following complex numbers:
(a) $\mathrm{z}=-1+\mathrm{i}$
(b) $\mathrm{z}=-\sqrt{3}+i$
(c) $\mathrm{z}=-3 \mathrm{i}$
(d) $\mathrm{z}=-2-4 \mathrm{i}$
2. Express each of the following complex numbers in rectangular form
(a) $3 \operatorname{cis} \frac{\pi}{4}$
(b) $\sqrt{7} c i s \pi$
(c) $8 \mathrm{cis} \frac{\pi}{2}$
(d) 10 cis 0.41
3. If $z=2+i$ and $w=1-4 i$ find each of the following in polar form using radians where appropriate:
(a) $|z|$
(b) $|w|$
(c) $\operatorname{Arg} \mathrm{z}$
(d) $|\bar{w}|$
(e) $\operatorname{Arg}(\mathrm{zw})$
(f) zw

Exercise 2

1. Simplify
(a) 4 cis $\frac{\pi}{3} \times 3$ cis $\frac{\pi}{4}$
(b) $\frac{3 \operatorname{cis} \frac{5 \pi}{6}}{12 \operatorname{cis} \frac{\pi}{6}}$
2. If $u=6 \operatorname{cis} \frac{3 \pi}{4}$ and $\mathrm{v}=4 \operatorname{cis}\left(-\frac{\pi}{4}\right)$ express $\frac{u}{v}$ in polar form
3. If $\mathrm{z}=1-\sqrt{3} \mathrm{i}$, find \bar{z} and express both z and \bar{z} in polar form using radians.

Answers

Exercise 1

1. (a) $\sqrt{2} \operatorname{cis} \frac{3 \pi}{4}$
(b) $2 \operatorname{cis} \frac{5 \pi}{6}$
(c) $3 \operatorname{cis} \frac{-\pi}{2}$
(d) $\sqrt{20} c i s(-2.03)$
2. (a) $\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}}$ i
(b) $-\sqrt{7}$
(c) 8 i
(d) $9.2+4 i$
3. (a) $\sqrt{5}$
(b) $\sqrt{17}$
(c) 0.46
(d) $\sqrt{17}$
(e) -0.86
(f) $9.22 \mathrm{cis}(-0.86)$

Exercise 2

1. (a) 12 cis $\frac{7 \pi}{12}$
(b) $\frac{1}{4} \operatorname{cis} \frac{2 \pi}{3}$
2. (a) $\frac{3}{2} \operatorname{cis} \pi$
3. $\mathrm{z}=2 \operatorname{cis}\left(-\frac{\pi}{3}\right) \quad \bar{z}=2 \operatorname{cis}\left(\frac{\pi}{3}\right)$
