CN1 COMPLEX NUMBERS: INTRODUCTION

Real and complex numbers

Equations such as $x+1=7,3 x=10$ and $x^{2}-7=0$ can all be solved within the real number system. But there is no real number which satisfies $x^{2}+1=0$.

To obtain solutions to this and other similar equations the complex numberswere developed.

The imaginarynumber i is defined such that $i^{2}=-1$

That is

$$
i=\sqrt{-1}
$$

and $i^{2}=-1, \quad i^{3}=-i, \quad i^{4}=1, \quad i^{5}=i$ etc

A number z of the form $\mathrm{z}=\mathrm{x}+\mathrm{yi}$ where x and y are real numbers is called a complex number
x is called the real partof z , denoted by Rez, and
y is called the imaginary part of z , denoted by $\operatorname{Im} \boldsymbol{z}$

Examples

1. If $z=5-3 i$ then $\operatorname{Re} z=5$ and $\operatorname{Im} z=-3$
2. If $z=\sqrt{3} i$ then $\operatorname{Re} z=0$ and $\operatorname{Im} z=\sqrt{3}$

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal

$$
a+b i=c+d i
$$

if and only if $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$

Example

If $z_{1}=x-\frac{i}{3}, z_{2}=\sqrt{2}+y i$ and $z_{1}=z_{2}$ find the values of x and y.
$\operatorname{Re} z_{1}=\operatorname{Re} z_{2} \Rightarrow \mathrm{x}=\sqrt{2}$
and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2} \Rightarrow \mathrm{y}=-\frac{1}{3}$
$\therefore \mathrm{x}=\sqrt{2}$ and $\mathrm{y}=-\frac{1}{3}$

Addition and Subtraction of Complex Numbers

To add or subtract complex numbers we add or subtract the real and imaginary parts separately:

$$
(\mathrm{a}+\mathrm{bi}) \pm(\mathrm{c}+\mathrm{di})=(\mathrm{a} \pm \mathrm{c})+(\mathrm{b} \pm \mathrm{d}) \mathrm{i}
$$

Examples

1. $(2+3 \mathrm{i})+(4-\mathrm{i})=(2+4)+(3-1) \mathrm{i}$

$$
=6+2 \mathrm{i}
$$

2. If $z_{1}=1-i$ and $z_{2}=3-5 i$ find $z_{1}-z_{2}$

$$
\begin{aligned}
z_{1}-z_{2} & =(1-\mathrm{i})-(3-5 \mathrm{i}) \\
& =(1-3)+(-1-(-5)) \mathrm{i} \\
& =-2+4 \mathrm{i}
\end{aligned}
$$

See Exercise 1

Multiplication of Complex Numbers

If $z_{1}=\mathrm{a}+$ bi and $z_{2}=\mathrm{c}+$ di are two complex numbers then

$$
\begin{aligned}
& \mathrm{k} z_{1}=\mathrm{k}(\mathrm{a}+\mathrm{bi}) \\
&=\mathrm{ka}+\mathrm{kbi}
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1} z_{2} & =(\mathrm{a}+\mathrm{bi})(\mathrm{c}+\mathrm{di}) \\
& =\mathrm{ac}+\mathrm{adi}+\mathrm{bci}+\mathrm{bdi}^{2} \\
& =(\mathrm{ac}-\mathrm{bd})+(\mathrm{ad}+\mathrm{bc}) \mathrm{i} \quad\left[\text { since } \mathrm{i}^{2}=-1\right]
\end{aligned}
$$

Examples

1. Expand and simplify $i(3+4 i)$

$$
\begin{aligned}
\mathrm{i}(3+4 \mathrm{i}) & =3 \mathrm{i}+4 \mathrm{i}^{2} \\
& =-4+3 \mathrm{i}
\end{aligned}
$$

2.. If $z_{1}=1-i$ and $z_{2}=3$ - $5 i$ find $z_{1} z_{2}$

$$
\begin{aligned}
z_{1} z_{2} & =(1-\mathrm{i})(3-5 \mathrm{i}) \\
& =3-3 \mathrm{i}-5 \mathrm{i}+5 \mathrm{i}^{2} \\
& =3-8 \mathrm{i}-5 \\
& =-2-8 \mathbf{i}
\end{aligned}
$$

See Exercise 2

Complex Conjugates

A pair of complex numbers of the form a + bi and a - bi are called complex conjugates.
If $\mathrm{z}=\mathrm{x}+\mathrm{yi}$ then the conjugate of z is denoted by $\bar{z}=\mathrm{x}-\mathrm{yi}$
Eg: $2+3 i$ and $2-3 i$ are a conjugate pair
$1-\mathrm{i}$ and $1+\mathrm{i}$ are a conjugate pair
-4 i and 4 i are a conjugate pair

The product of a conjugate pair of complex numbers is a real number
Since $z \bar{z}=(\mathrm{x}+\mathrm{yi})(\mathrm{x}-\mathrm{yi})=\mathrm{x}^{2}+\mathrm{y}^{2}$

Some properties of conjugates:
If z_{1} and z_{2} represent two conjugate numbers then:
(i) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
(ii) $\overline{z_{1} \times z_{2}}=\overline{z_{1}} \times \overline{z_{2}}$
(iii) $\overline{\bar{z}}=z$

Examples

If $z=2-i$ and $w=-3+4 i$ find:

1. \bar{z}
2. $\bar{z}-\bar{w}$
3. $\overline{z+w}$
4. $\bar{z}=2+\mathrm{i}$
5. $\bar{z}-\bar{w}=2+\mathrm{i}-(-3-4 \mathrm{i})$

$$
\begin{aligned}
& =2+3+i+4 i \\
& =5+5 i
\end{aligned}
$$

3. $\overline{z+w}=\overline{2-i+(-3+4 i)}$

$$
\begin{aligned}
& =\overline{-1+3 i} \\
& =-1-3 i
\end{aligned}
$$

See Exercise 3

Division of complex numbers

If $z_{1}=\mathrm{a}+$ bi and $z_{2}=\mathrm{c}+\mathrm{di}$, then $\frac{z_{1}}{z_{2}}=\frac{a+b i}{c+d i}$.
To express $\frac{z_{1}}{z_{2}}$ in the form $\mathrm{x}+$ yi we make use of the conjugate to 'realize'the denominator.

Examples

1. Express $\frac{2-i}{1+3 i}$ in the form $x+y i$

$$
\begin{aligned}
\frac{2-i}{1+3 i} & =\frac{2-i}{1+3 i} \times \frac{1-3 i}{1-3 i} \\
& =\frac{2-i-6 i-3}{1+9} \\
& =\frac{-1-7 i}{10} \\
& =-\frac{1}{10}-\frac{7}{10} i
\end{aligned}
$$

2. $\frac{i}{1-4 i}+\frac{2}{3+i}=\frac{i}{1-4 i} \cdot \frac{1+4 i}{1+4 i}+\frac{2}{3+i} \cdot \frac{3-i}{3-i} \quad$ [to rationalize denominators]

$$
\begin{aligned}
& =\frac{i-4}{1+16}+\frac{6-2 i}{9+1} \\
& =\frac{i-4}{17}+\frac{6-2 i}{10}
\end{aligned}
$$

$$
=\frac{i-4}{17} \cdot \frac{10}{10}+\frac{6-2 i}{10} \cdot \frac{17}{17} \quad[170 \text { is a common denominator }]
$$

$$
=\frac{10 i-40}{170}+\frac{102-34 i}{170}
$$

$$
=\frac{10 i-40+102-34 i}{170}
$$

$$
=\frac{62-24 i}{170}
$$

$$
=\frac{2(31-12 i)}{170}=\frac{31-12 i}{85}
$$

An Argand Diagram is a geometrical representation of the set of complex numbers. The complex number $z=x+y i$ can plotted as a point represented by the ordered pair (x, y) on the complex number plane:

See Exercise 5

Exercises

Exercise 1

1. Express the following in terms of i in simplest surd form
(a) $\sqrt{-9}$
(b) $\sqrt{-2}$
(c) $\sqrt{-5} \times \sqrt{3}$
(d) $\sqrt{-5} \times \sqrt{10}$
(e) $\sqrt{-6} \times \sqrt{12}$
2. Evaluate
(a) i^{4}
(b) i^{9}
(c) $i^{7}-i^{11}$
(d) $i^{5}+i^{6}-i^{7}$
(e) $2 i-i^{6}+2 i^{7}$
3. State the value of $\operatorname{Re} z$ and $\operatorname{Im} z$ for these complex numbers:
(a) $2+7 \mathrm{i}$
(b) $10-\mathrm{i}$
(c) $\pi+3 \mathrm{i}$
(d) $\frac{i}{6}$
(e) -8
4. Find the values of x and y
(a) $x+y i=4+9 i$
(b) $\mathrm{x}+\mathrm{yi}=3-\mathrm{i}$
(c) $x+y i=23$
(d) $x+y i=-\sqrt{2} i$
(e) $x+i=-5+y i$

Exercise 2

1. Expand and simplify
(a) $\mathrm{i}(3-2 \mathrm{i})$
(b) $2 \mathrm{i}^{3}(1-5 \mathrm{i})$
(c) $(8-3 \mathrm{i})(2-5 \mathrm{i})$
(d) $(4-3 i)^{2}$
(e) $(3+2 \mathrm{i})(3-2 \mathrm{i})$
2. If $z_{1}=-1+3 i$ and $z_{2}=2-\mathrm{i}$ find each of the following
(a) $z_{1} z_{2}$
(b) $2 z_{1}-z_{2}$
(c) $\left(z_{1}-z_{2}\right)^{2}$
3. Find the value of x and y if $(x+y i)(2-3 i)=-13 i$

Exercise 3

1. Find the conjugate of each of the following complex numbers:
(a) $4+9 i$
(b) $-3-15 i$
(c) $\sqrt{3}-4 \mathrm{i}$
2. Find the conjugate of $(2-i)(4+7 i)$
3. If $\mathrm{z}=2$ - i and $\mathrm{w}=1+2 \mathrm{i}$ express the following in the form $\mathrm{x}+\mathrm{yi}$:
(a) \bar{z}
(b) $\overline{z+w}$
(c) $\bar{z}+w$
(d) $\overline{z w}$
(e) $\overline{\bar{z}-\bar{w}}$

Exercise 4

1. Express the following in the form $x+y i$
(a) $\frac{4-9 i}{3}$
(b) $\frac{1}{3-i}$
(c) $\frac{5+i}{2-7 i}$
2. Simplify $\frac{2}{1-i}+\frac{3+i}{i}$
3. If $\mathrm{w}=-1+6 \mathrm{i}$ express $\frac{w+1}{w-i}$ in the form $\mathrm{x}+\mathrm{yi}$

Exercise 5

If $\mathrm{z}=2-3 \mathrm{i}$ and $\mathrm{w}=1+4 \mathrm{i}$, illustrate on an Argand diagram

1. Z
2. w
3. $\mathrm{z}+\mathrm{w}$
4. $\overline{z+w}$
5. $2 \mathrm{z}-\mathrm{w}$

Answers

Exercise 1

1. (a) 3 i
(b) $\sqrt{2} i$
(c) $\sqrt{15} i$
(d) $5 \sqrt{2} i$
(e) $6 \sqrt{2} i$
2. (a) 1
(b) i
(c) 0
(d) $2 \mathrm{i}-1$
(e) 1
3. (a) $\operatorname{Re} z=2 \operatorname{Im} z=7$
(b) $\operatorname{Re} z=10 \quad \operatorname{Im} z=-1$
(c) $\operatorname{Re} z=\pi \quad \operatorname{Im} z=3$
(d) $\operatorname{Re} z=0 \quad \operatorname{Im} z=\frac{1}{6}$
(e) $\operatorname{Re} z=-8 \quad \operatorname{Im} z=0$
4. (a) $x=4, y=9$
(b) $x=3, y=-1$
(c) $x=23, y=0$
(d) $x=0, y=-\sqrt{2}$
(e) $x=-5, y=1$

Exercise 2

1. (a) $2+3 i$
(b) $-10-2 \mathrm{i}$
(c) 1-46i
(d) $7-24 i$
(e) 13
2. (a) $1+7 i$
(b) $-4+7 i$
(c) $-7-24 \mathrm{i}$
3. $x=3, y=-2$

Exercise 3
1 (a) $4-9 i$
(b) $-3+15 \mathrm{i}$
(c) $\sqrt{3}+4 \mathrm{i}$
2. $15-10 \mathrm{i}$
3. (a) $2+\mathrm{i} \quad$ (b) $3-\mathrm{i}$
(c) $3-\mathrm{i}$
(d) $4-3 \mathrm{i}$
(e) $1-3 \mathrm{i}$

Exercise 4

1. (a) $\frac{4}{3}-3 \mathrm{i}$
(b) $\frac{3}{10}+\frac{1}{10} i$
(c) $\frac{3}{53}+\frac{37}{53} i$
2. $2-2 \mathrm{i}$
3. $\frac{15}{13}-\frac{3}{13} i$

Exercise 5

