Antidifferentiation

Antidifferentiation (also called integration) is the opposite operation to differentiation. Given a derivative $f^{\prime}(x)$ of a function we want to find the original function $f(x)$. The original function is called an antiderivative.

Play a short video on Antidifferentiation.

The Basic Concept

Think about the following examples:

1. If $f(x)=\frac{x^{3}}{3}$, then $f^{\prime}(x)=x^{2}$ so $\frac{x^{3}}{3}$ is an antiderivative of x^{2}.
2. If $f(x)=\frac{x^{3}}{3}+1$, then $f^{\prime}(x)=x^{2}$ so $\frac{x^{3}}{3}+1$ is an antiderivative of x^{2}.
3. If $f(x)=\frac{x^{3}}{3}+2$, then $f^{\prime}(x)=x^{2}$ so $\frac{x^{3}}{3}+2$ is an antiderivative of x^{2}.

Notice that adding a constant to $\frac{x^{3}}{3}$ does not change the fact it is an antiderivative of x^{2}. This is because the derivative of a constant is zero.

In general an antiderivative of $f^{\prime}(x)$ is given by $f(x)+c$ where c is a constant ${ }^{1}$.

Finding Antiderivatives

Antidifferentiation is more complicated than differentiation. However there are some rules to help us. One of the most important is the power rule which says ${ }^{2}$:

$$
\begin{aligned}
& \text { If } f^{\prime}(x)=x^{n}, n \neq-1 \text { the antiderivative } f(x)=\frac{1}{n+1} x^{n+1}+c, \\
& \text { where } c \text { is a constant. }
\end{aligned}
$$

Isaac Newton co-invented Calculus which comprises differentiation and antidifferentiation (integration). This portrait of Newton at age 46 was done by Godfrey Kneller in 1689. (https://en.wikipedia.org/wiki/ Isaac_Newton)
${ }^{1}$ We often write $c \in \mathbb{R}$ which means that c is a real number.

[^0]
Alternate Notation

If $y=f(x)$ then $d y / d x=f^{\prime}(x)$. If $d y / d x=x^{n}$, the antiderivative $y=\frac{1}{n+1} x^{n+1}+c$, where c is a constant.

Examples

1. Given $d y / d x=x$,find the antiderivative. 3
${ }^{3}$ In this case $n=1$ because $x=x^{1}$.

$$
\begin{aligned}
y & =\frac{x^{1+1}}{1+1}+c, c \in \mathbb{R} \quad \text { (add one to the power of } x, \text { divide by the new power and add a constant) } \\
& =\frac{x^{2}}{2}+c
\end{aligned}
$$

2. Given $d y / d x=1$,find the antiderivative. 4
${ }^{4}$ In this case $n=0$ because $x^{0}=1$.

$$
\begin{aligned}
y & =\frac{x^{0+1}}{0+1}+c, c \in \mathbb{R} \quad(\text { add one to the power of } x, \text { divide by the new power and add a constant }) \\
& =x+c
\end{aligned}
$$

3. Given $d y / d x=x^{-3}$,find the antiderivative. 5

$$
\begin{aligned}
y & =\frac{x^{-3+1}}{-3+1}+c, c \in \mathbb{R} \\
& =\frac{x^{-2}}{-2}+c \\
& =-\frac{1}{2 x^{2}}+c .
\end{aligned}
$$

4. Given $d y / d x=\sqrt{x}$, find the antiderivative. ${ }^{6}$

$$
\begin{aligned}
y & =\frac{x^{1 / 2+1}}{1 / 2+1}+c, c \in \mathbb{R} \\
& =\frac{x^{3 / 2}}{3 / 2}+c \\
& =\frac{2}{3} x^{3 / 2}+c .
\end{aligned}
$$

Exercises

Find antiderivatives for the following:

1. x^{3}
2. s^{8}
3. $\sqrt[3]{x}$
4. x^{-5}
5. 6
6. m^{-2}
7. $p^{-1 / 2}$

Answers

In all cases, c is a constant.

1. $\frac{1}{4} x^{4}+c$
2. $\frac{1}{9} s^{9}+c$
3. $\frac{3}{4} x^{4 / 3}+c$
4. $-\frac{1}{4} x^{-4}+c$
5. $6 x+$

$$
\text { 6. }-m^{-1}+c=-\frac{1}{m}+c \quad \text { 7. } 2 p^{1 / 2}+c
$$

c

[^0]: ${ }^{2}$ Note that if $n=-1,1 / n+1$ would be $1 / 0$ which has no meaning. Apart from this restriction, n can be any number.

