Antidifferentiation

Antidifferentiation (also called integration) is the opposite operation to differentiation. Given a derivative f'(x) of a function we want to find the original function f(x). The original function is called an antiderivative.

Play a short video on Antidifferentiation.

The Basic Concept

Think about the following examples:

- 1. If $f(x) = \frac{x^3}{3}$, then $f'(x) = x^2$ so $\frac{x^3}{3}$ is an antiderivative of x^2 .
- 2. If $f(x) = \frac{x^3}{3} + 1$, then $f'(x) = x^2$ so $\frac{x^3}{3} + 1$ is an antiderivative of x^2 .
- 3. If $f(x) = \frac{x^3}{3} + 2$, then $f'(x) = x^2$ so $\frac{x^3}{3} + 2$ is an antiderivative of x^2 .

Notice that adding a constant to $\frac{x^3}{3}$ does not change the fact it is an antiderivative of x^2 . This is because the derivative of a constant is zero.

In general an antiderivative of f'(x) is given by f(x) + c where c is a constant¹.

Finding Antiderivatives

Antidifferentiation is more complicated than differentiation. However there are some rules to help us. One of the most important is the power rule which says²:

If $f'(x) = x^n$, $n \neq -1$ the antiderivative $f(x) = \frac{1}{n+1}x^{n+1} + c$, where *c* is a constant.

Isaac Newton co-invented Calculus which comprises differentiation and antidifferentiation (integration). This portrait of Newton at age 46 was done by Godfrey Kneller in 1689. (https://en.wikipedia.org/wiki/ Isaac_Newton)

¹ We often write $c \in \mathbb{R}$ which means that *c* is a real number.

² Note that if n = -1, 1/n+1 would be 1/0 which has no meaning. Apart from this restriction, *n* can be any number.

Alternate Notation

If y = f(x) then $\frac{dy}{dx} = f'(x)$. If $\frac{dy}{dx} = x^n$, the antiderivative $y = \frac{1}{n+1}x^{n+1} + c$, where *c* is a constant.

Examples

1. Given dy/dx = x, find the antiderivative. ³

$$y = \frac{x^{1+1}}{1+1} + c, \ c \in \mathbb{R} \quad (\text{add one to the power of } x, \text{divide by the new power and add a constant})$$
$$= \frac{x^2}{2} + c.$$

2. Given dy/dx = 1, find the antiderivative. ⁴

$$y = \frac{x^{0+1}}{0+1} + c, \ c \in \mathbb{R} \quad (add one to the power of x, divide by the new power and add a constant)$$
$$= x + c.$$

3. Given $dy/dx = x^{-3}$, find the antiderivative. ⁵

$$y = \frac{x^{-3+1}}{-3+1} + c, \ c \in \mathbb{R}$$
$$= \frac{x^{-2}}{-2} + c$$
$$= -\frac{1}{2x^2} + c.$$

4. Given $dy/dx = \sqrt{x}$, find the antiderivative.⁶

$$y = \frac{x^{1/2+1}}{1/2+1} + c, \ c \in \mathbb{R}$$
$$= \frac{x^{3/2}}{3/2} + c$$
$$= \frac{2}{3}x^{3/2} + c.$$

Exercises

Find antiderivatives for the following: 1. x^3 2. s^8 3. $\sqrt[3]{x}$ 4. x^{-5} 5. 6 6. m^{-2} 7. $p^{-1/2}$

Answers

In all cases, *c* is a constant.

1.
$$\frac{1}{4}x^4 + c$$
 2. $\frac{1}{9}s^9 + c$ 3. $\frac{3}{4}x^{4/3} + c$ 4. $-\frac{1}{4}x^{-4} + c$ 5. $6x + c$
6. $-m^{-1} + c = -\frac{1}{m} + c$ 7. $2p^{1/2} + c$

⁵ In this case n = -3. The new power will be -2.

³ In this case n = 1 because $x = x^1$.

⁴ In this case n = 0 because $x^0 = 1$.

⁶ In this case, n = 1/2 because $\sqrt{x} = x^{1/2}$. The new power will be 1/2 + 1 = 3/2.